Basic Math Examples

Simplify (vw^5)((u^-1v^2)/(2w^2))^-3
(vw5)(u-1v22w2)-3(vw5)(u1v22w2)3
Step 1
Move u-1u1 to the denominator using the negative exponent rule b-n=1bnbn=1bn.
vw5(v22w2u)-3vw5(v22w2u)3
Step 2
Change the sign of the exponent by rewriting the base as its reciprocal.
vw5(2w2uv2)3vw5(2w2uv2)3
Step 3
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 3.1
Apply the product rule to 2w2uv22w2uv2.
vw5(2w2u)3(v2)3vw5(2w2u)3(v2)3
Step 3.2
Apply the product rule to 2w2u2w2u.
vw5(2w2)3u3(v2)3vw5(2w2)3u3(v2)3
Step 3.3
Apply the product rule to 2w22w2.
vw523(w2)3u3(v2)3vw523(w2)3u3(v2)3
vw523(w2)3u3(v2)3vw523(w2)3u3(v2)3
Step 4
Simplify the numerator.
Tap for more steps...
Step 4.1
Raise 22 to the power of 33.
vw58(w2)3u3(v2)3vw58(w2)3u3(v2)3
Step 4.2
Multiply the exponents in (w2)3(w2)3.
Tap for more steps...
Step 4.2.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
vw58w23u3(v2)3vw58w23u3(v2)3
Step 4.2.2
Multiply 22 by 33.
vw58w6u3(v2)3vw58w6u3(v2)3
vw58w6u3(v2)3vw58w6u3(v2)3
vw58w6u3(v2)3vw58w6u3(v2)3
Step 5
Simplify terms.
Tap for more steps...
Step 5.1
Multiply the exponents in (v2)3(v2)3.
Tap for more steps...
Step 5.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
vw58w6u3v23vw58w6u3v23
Step 5.1.2
Multiply 22 by 33.
vw58w6u3v6vw58w6u3v6
vw58w6u3v6vw58w6u3v6
Step 5.2
Cancel the common factor of vv.
Tap for more steps...
Step 5.2.1
Factor vv out of vw5vw5.
v(w5)8w6u3v6v(w5)8w6u3v6
Step 5.2.2
Factor vv out of v6v6.
v(w5)8w6u3vv5v(w5)8w6u3vv5
Step 5.2.3
Cancel the common factor.
vw58w6u3vv5
Step 5.2.4
Rewrite the expression.
w58w6u3v5
w58w6u3v5
Step 5.3
Combine w5 and 8w6u3v5.
w5(8w6u3)v5
w5(8w6u3)v5
Step 6
Multiply w5 by w6 by adding the exponents.
Tap for more steps...
Step 6.1
Move w6.
w6w5(8u3)v5
Step 6.2
Use the power rule aman=am+n to combine exponents.
w6+5(8u3)v5
Step 6.3
Add 6 and 5.
w11(8u3)v5
w11(8u3)v5
Step 7
Move 8 to the left of w11.
8w11u3v5
 [x2  12  π  xdx ]