Enter a problem...
Basic Math Examples
517÷334
Step 1
Step 1.1
A mixed number is an addition of its whole and fractional parts.
(5+17)÷334
Step 1.2
Add 5 and 17.
Step 1.2.1
To write 5 as a fraction with a common denominator, multiply by 77.
(5⋅77+17)÷334
Step 1.2.2
Combine 5 and 77.
(5⋅77+17)÷334
Step 1.2.3
Combine the numerators over the common denominator.
5⋅7+17÷334
Step 1.2.4
Simplify the numerator.
Step 1.2.4.1
Multiply 5 by 7.
35+17÷334
Step 1.2.4.2
Add 35 and 1.
367÷334
367÷334
367÷334
367÷334
Step 2
Step 2.1
A mixed number is an addition of its whole and fractional parts.
367÷(3+34)
Step 2.2
Add 3 and 34.
Step 2.2.1
To write 3 as a fraction with a common denominator, multiply by 44.
367÷(3⋅44+34)
Step 2.2.2
Combine 3 and 44.
367÷(3⋅44+34)
Step 2.2.3
Combine the numerators over the common denominator.
367÷3⋅4+34
Step 2.2.4
Simplify the numerator.
Step 2.2.4.1
Multiply 3 by 4.
367÷12+34
Step 2.2.4.2
Add 12 and 3.
367÷154
367÷154
367÷154
367÷154
Step 3
To divide by a fraction, multiply by its reciprocal.
367⋅415
Step 4
Step 4.1
Factor 3 out of 36.
3(12)7⋅415
Step 4.2
Factor 3 out of 15.
3⋅127⋅43⋅5
Step 4.3
Cancel the common factor.
3⋅127⋅43⋅5
Step 4.4
Rewrite the expression.
127⋅45
127⋅45
Step 5
Multiply 127 by 45.
12⋅47⋅5
Step 6
Step 6.1
Multiply 12 by 4.
487⋅5
Step 6.2
Multiply 7 by 5.
4835
4835
Step 7
The result can be shown in multiple forms.
Exact Form:
4835
Decimal Form:
1.37142857…
Mixed Number Form:
11335