Basic Math Examples

Solve for r (4r^2+10r)/((r-4)(r+5))-2=(4r-16)/((r-4)(r+5))
4r2+10r(r-4)(r+5)-2=4r-16(r-4)(r+5)4r2+10r(r4)(r+5)2=4r16(r4)(r+5)
Step 1
Factor each term.
Tap for more steps...
Step 1.1
Factor 2r2r out of 4r2+10r4r2+10r.
Tap for more steps...
Step 1.1.1
Factor 2r2r out of 4r24r2.
2r(2r)+10r(r-4)(r+5)-2=4r-16(r-4)(r+5)2r(2r)+10r(r4)(r+5)2=4r16(r4)(r+5)
Step 1.1.2
Factor 2r2r out of 10r10r.
2r(2r)+2r(5)(r-4)(r+5)-2=4r-16(r-4)(r+5)2r(2r)+2r(5)(r4)(r+5)2=4r16(r4)(r+5)
Step 1.1.3
Factor 2r2r out of 2r(2r)+2r(5)2r(2r)+2r(5).
2r(2r+5)(r-4)(r+5)-2=4r-16(r-4)(r+5)2r(2r+5)(r4)(r+5)2=4r16(r4)(r+5)
2r(2r+5)(r-4)(r+5)-2=4r-16(r-4)(r+5)2r(2r+5)(r4)(r+5)2=4r16(r4)(r+5)
Step 1.2
Factor 44 out of 4r-164r16.
Tap for more steps...
Step 1.2.1
Factor 44 out of 4r4r.
2r(2r+5)(r-4)(r+5)-2=4(r)-16(r-4)(r+5)2r(2r+5)(r4)(r+5)2=4(r)16(r4)(r+5)
Step 1.2.2
Factor 44 out of -1616.
2r(2r+5)(r-4)(r+5)-2=4r+4-4(r-4)(r+5)2r(2r+5)(r4)(r+5)2=4r+44(r4)(r+5)
Step 1.2.3
Factor 44 out of 4r+4-44r+44.
2r(2r+5)(r-4)(r+5)-2=4(r-4)(r-4)(r+5)2r(2r+5)(r4)(r+5)2=4(r4)(r4)(r+5)
2r(2r+5)(r-4)(r+5)-2=4(r-4)(r-4)(r+5)2r(2r+5)(r4)(r+5)2=4(r4)(r4)(r+5)
Step 1.3
Reduce the expression 4(r-4)(r-4)(r+5)4(r4)(r4)(r+5) by cancelling the common factors.
Tap for more steps...
Step 1.3.1
Cancel the common factor.
2r(2r+5)(r-4)(r+5)-2=4(r-4)(r-4)(r+5)
Step 1.3.2
Rewrite the expression.
2r(2r+5)(r-4)(r+5)-2=4r+5
2r(2r+5)(r-4)(r+5)-2=4r+5
2r(2r+5)(r-4)(r+5)-2=4r+5
Step 2
Find the LCD of the terms in the equation.
Tap for more steps...
Step 2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
(r-4)(r+5),1,r+5
Step 2.2
The LCM is the smallest positive number that all of the numbers divide into evenly.
1. List the prime factors of each number.
2. Multiply each factor the greatest number of times it occurs in either number.
Step 2.3
The number 1 is not a prime number because it only has one positive factor, which is itself.
Not prime
Step 2.4
The LCM of 1,1,1 is the result of multiplying all prime factors the greatest number of times they occur in either number.
1
Step 2.5
The factor for r-4 is r-4 itself.
(r-4)=r-4
(r-4) occurs 1 time.
Step 2.6
The factor for r+5 is r+5 itself.
(r+5)=r+5
(r+5) occurs 1 time.
Step 2.7
The LCM of r-4,r+5,r+5 is the result of multiplying all factors the greatest number of times they occur in either term.
(r-4)(r+5)
(r-4)(r+5)
Step 3
Multiply each term in 2r(2r+5)(r-4)(r+5)-2=4r+5 by (r-4)(r+5) to eliminate the fractions.
Tap for more steps...
Step 3.1
Multiply each term in 2r(2r+5)(r-4)(r+5)-2=4r+5 by (r-4)(r+5).
2r(2r+5)(r-4)(r+5)((r-4)(r+5))-2((r-4)(r+5))=4r+5((r-4)(r+5))
Step 3.2
Simplify the left side.
Tap for more steps...
Step 3.2.1
Simplify each term.
Tap for more steps...
Step 3.2.1.1
Cancel the common factor of (r-4)(r+5).
Tap for more steps...
Step 3.2.1.1.1
Cancel the common factor.
2r(2r+5)(r-4)(r+5)((r-4)(r+5))-2((r-4)(r+5))=4r+5((r-4)(r+5))
Step 3.2.1.1.2
Rewrite the expression.
2r(2r+5)-2((r-4)(r+5))=4r+5((r-4)(r+5))
2r(2r+5)-2((r-4)(r+5))=4r+5((r-4)(r+5))
Step 3.2.1.2
Apply the distributive property.
2r(2r)+2r5-2((r-4)(r+5))=4r+5((r-4)(r+5))
Step 3.2.1.3
Rewrite using the commutative property of multiplication.
22rr+2r5-2((r-4)(r+5))=4r+5((r-4)(r+5))
Step 3.2.1.4
Multiply 5 by 2.
22rr+10r-2((r-4)(r+5))=4r+5((r-4)(r+5))
Step 3.2.1.5
Simplify each term.
Tap for more steps...
Step 3.2.1.5.1
Multiply r by r by adding the exponents.
Tap for more steps...
Step 3.2.1.5.1.1
Move r.
22(rr)+10r-2((r-4)(r+5))=4r+5((r-4)(r+5))
Step 3.2.1.5.1.2
Multiply r by r.
22r2+10r-2((r-4)(r+5))=4r+5((r-4)(r+5))
22r2+10r-2((r-4)(r+5))=4r+5((r-4)(r+5))
Step 3.2.1.5.2
Multiply 2 by 2.
4r2+10r-2((r-4)(r+5))=4r+5((r-4)(r+5))
4r2+10r-2((r-4)(r+5))=4r+5((r-4)(r+5))
Step 3.2.1.6
Expand (r-4)(r+5) using the FOIL Method.
Tap for more steps...
Step 3.2.1.6.1
Apply the distributive property.
4r2+10r-2(r(r+5)-4(r+5))=4r+5((r-4)(r+5))
Step 3.2.1.6.2
Apply the distributive property.
4r2+10r-2(rr+r5-4(r+5))=4r+5((r-4)(r+5))
Step 3.2.1.6.3
Apply the distributive property.
4r2+10r-2(rr+r5-4r-45)=4r+5((r-4)(r+5))
4r2+10r-2(rr+r5-4r-45)=4r+5((r-4)(r+5))
Step 3.2.1.7
Simplify and combine like terms.
Tap for more steps...
Step 3.2.1.7.1
Simplify each term.
Tap for more steps...
Step 3.2.1.7.1.1
Multiply r by r.
4r2+10r-2(r2+r5-4r-45)=4r+5((r-4)(r+5))
Step 3.2.1.7.1.2
Move 5 to the left of r.
4r2+10r-2(r2+5r-4r-45)=4r+5((r-4)(r+5))
Step 3.2.1.7.1.3
Multiply -4 by 5.
4r2+10r-2(r2+5r-4r-20)=4r+5((r-4)(r+5))
4r2+10r-2(r2+5r-4r-20)=4r+5((r-4)(r+5))
Step 3.2.1.7.2
Subtract 4r from 5r.
4r2+10r-2(r2+r-20)=4r+5((r-4)(r+5))
4r2+10r-2(r2+r-20)=4r+5((r-4)(r+5))
Step 3.2.1.8
Apply the distributive property.
4r2+10r-2r2-2r-2-20=4r+5((r-4)(r+5))
Step 3.2.1.9
Multiply -2 by -20.
4r2+10r-2r2-2r+40=4r+5((r-4)(r+5))
4r2+10r-2r2-2r+40=4r+5((r-4)(r+5))
Step 3.2.2
Simplify by adding terms.
Tap for more steps...
Step 3.2.2.1
Subtract 2r2 from 4r2.
2r2+10r-2r+40=4r+5((r-4)(r+5))
Step 3.2.2.2
Subtract 2r from 10r.
2r2+8r+40=4r+5((r-4)(r+5))
2r2+8r+40=4r+5((r-4)(r+5))
2r2+8r+40=4r+5((r-4)(r+5))
Step 3.3
Simplify the right side.
Tap for more steps...
Step 3.3.1
Cancel the common factor of r+5.
Tap for more steps...
Step 3.3.1.1
Factor r+5 out of (r-4)(r+5).
2r2+8r+40=4r+5((r+5)(r-4))
Step 3.3.1.2
Cancel the common factor.
2r2+8r+40=4r+5((r+5)(r-4))
Step 3.3.1.3
Rewrite the expression.
2r2+8r+40=4(r-4)
2r2+8r+40=4(r-4)
Step 3.3.2
Apply the distributive property.
2r2+8r+40=4r+4-4
Step 3.3.3
Multiply 4 by -4.
2r2+8r+40=4r-16
2r2+8r+40=4r-16
2r2+8r+40=4r-16
Step 4
Solve the equation.
Tap for more steps...
Step 4.1
Move all terms containing r to the left side of the equation.
Tap for more steps...
Step 4.1.1
Subtract 4r from both sides of the equation.
2r2+8r+40-4r=-16
Step 4.1.2
Subtract 4r from 8r.
2r2+4r+40=-16
2r2+4r+40=-16
Step 4.2
Add 16 to both sides of the equation.
2r2+4r+40+16=0
Step 4.3
Add 40 and 16.
2r2+4r+56=0
Step 4.4
Factor 2 out of 2r2+4r+56.
Tap for more steps...
Step 4.4.1
Factor 2 out of 2r2.
2(r2)+4r+56=0
Step 4.4.2
Factor 2 out of 4r.
2(r2)+2(2r)+56=0
Step 4.4.3
Factor 2 out of 56.
2r2+2(2r)+228=0
Step 4.4.4
Factor 2 out of 2r2+2(2r).
2(r2+2r)+228=0
Step 4.4.5
Factor 2 out of 2(r2+2r)+228.
2(r2+2r+28)=0
2(r2+2r+28)=0
Step 4.5
Divide each term in 2(r2+2r+28)=0 by 2 and simplify.
Tap for more steps...
Step 4.5.1
Divide each term in 2(r2+2r+28)=0 by 2.
2(r2+2r+28)2=02
Step 4.5.2
Simplify the left side.
Tap for more steps...
Step 4.5.2.1
Cancel the common factor of 2.
Tap for more steps...
Step 4.5.2.1.1
Cancel the common factor.
2(r2+2r+28)2=02
Step 4.5.2.1.2
Divide r2+2r+28 by 1.
r2+2r+28=02
r2+2r+28=02
r2+2r+28=02
Step 4.5.3
Simplify the right side.
Tap for more steps...
Step 4.5.3.1
Divide 0 by 2.
r2+2r+28=0
r2+2r+28=0
r2+2r+28=0
Step 4.6
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 4.7
Substitute the values a=1, b=2, and c=28 into the quadratic formula and solve for r.
-2±22-4(128)21
Step 4.8
Simplify.
Tap for more steps...
Step 4.8.1
Simplify the numerator.
Tap for more steps...
Step 4.8.1.1
Raise 2 to the power of 2.
r=-2±4-412821
Step 4.8.1.2
Multiply -4128.
Tap for more steps...
Step 4.8.1.2.1
Multiply -4 by 1.
r=-2±4-42821
Step 4.8.1.2.2
Multiply -4 by 28.
r=-2±4-11221
r=-2±4-11221
Step 4.8.1.3
Subtract 112 from 4.
r=-2±-10821
Step 4.8.1.4
Rewrite -108 as -1(108).
r=-2±-110821
Step 4.8.1.5
Rewrite -1(108) as -1108.
r=-2±-110821
Step 4.8.1.6
Rewrite -1 as i.
r=-2±i10821
Step 4.8.1.7
Rewrite 108 as 623.
Tap for more steps...
Step 4.8.1.7.1
Factor 36 out of 108.
r=-2±i36(3)21
Step 4.8.1.7.2
Rewrite 36 as 62.
r=-2±i62321
r=-2±i62321
Step 4.8.1.8
Pull terms out from under the radical.
r=-2±i(63)21
Step 4.8.1.9
Move 6 to the left of i.
r=-2±6i321
r=-2±6i321
Step 4.8.2
Multiply 2 by 1.
r=-2±6i32
Step 4.8.3
Simplify -2±6i32.
r=-1±3i3
r=-1±3i3
Step 4.9
The final answer is the combination of both solutions.
r=-1+3i3,-1-3i3
r=-1+3i3,-1-3i3
 [x2  12  π  xdx ]