Enter a problem...
Basic Math Examples
4r2+10r(r-4)(r+5)-2=4r-16(r-4)(r+5)4r2+10r(r−4)(r+5)−2=4r−16(r−4)(r+5)
Step 1
Step 1.1
Factor 2r2r out of 4r2+10r4r2+10r.
Step 1.1.1
Factor 2r2r out of 4r24r2.
2r(2r)+10r(r-4)(r+5)-2=4r-16(r-4)(r+5)2r(2r)+10r(r−4)(r+5)−2=4r−16(r−4)(r+5)
Step 1.1.2
Factor 2r2r out of 10r10r.
2r(2r)+2r(5)(r-4)(r+5)-2=4r-16(r-4)(r+5)2r(2r)+2r(5)(r−4)(r+5)−2=4r−16(r−4)(r+5)
Step 1.1.3
Factor 2r2r out of 2r(2r)+2r(5)2r(2r)+2r(5).
2r(2r+5)(r-4)(r+5)-2=4r-16(r-4)(r+5)2r(2r+5)(r−4)(r+5)−2=4r−16(r−4)(r+5)
2r(2r+5)(r-4)(r+5)-2=4r-16(r-4)(r+5)2r(2r+5)(r−4)(r+5)−2=4r−16(r−4)(r+5)
Step 1.2
Factor 44 out of 4r-164r−16.
Step 1.2.1
Factor 44 out of 4r4r.
2r(2r+5)(r-4)(r+5)-2=4(r)-16(r-4)(r+5)2r(2r+5)(r−4)(r+5)−2=4(r)−16(r−4)(r+5)
Step 1.2.2
Factor 44 out of -16−16.
2r(2r+5)(r-4)(r+5)-2=4r+4⋅-4(r-4)(r+5)2r(2r+5)(r−4)(r+5)−2=4r+4⋅−4(r−4)(r+5)
Step 1.2.3
Factor 44 out of 4r+4⋅-44r+4⋅−4.
2r(2r+5)(r-4)(r+5)-2=4(r-4)(r-4)(r+5)2r(2r+5)(r−4)(r+5)−2=4(r−4)(r−4)(r+5)
2r(2r+5)(r-4)(r+5)-2=4(r-4)(r-4)(r+5)2r(2r+5)(r−4)(r+5)−2=4(r−4)(r−4)(r+5)
Step 1.3
Reduce the expression 4(r-4)(r-4)(r+5)4(r−4)(r−4)(r+5) by cancelling the common factors.
Step 1.3.1
Cancel the common factor.
2r(2r+5)(r-4)(r+5)-2=4(r-4)(r-4)(r+5)
Step 1.3.2
Rewrite the expression.
2r(2r+5)(r-4)(r+5)-2=4r+5
2r(2r+5)(r-4)(r+5)-2=4r+5
2r(2r+5)(r-4)(r+5)-2=4r+5
Step 2
Step 2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
(r-4)(r+5),1,r+5
Step 2.2
The LCM is the smallest positive number that all of the numbers divide into evenly.
1. List the prime factors of each number.
2. Multiply each factor the greatest number of times it occurs in either number.
Step 2.3
The number 1 is not a prime number because it only has one positive factor, which is itself.
Not prime
Step 2.4
The LCM of 1,1,1 is the result of multiplying all prime factors the greatest number of times they occur in either number.
1
Step 2.5
The factor for r-4 is r-4 itself.
(r-4)=r-4
(r-4) occurs 1 time.
Step 2.6
The factor for r+5 is r+5 itself.
(r+5)=r+5
(r+5) occurs 1 time.
Step 2.7
The LCM of r-4,r+5,r+5 is the result of multiplying all factors the greatest number of times they occur in either term.
(r-4)(r+5)
(r-4)(r+5)
Step 3
Step 3.1
Multiply each term in 2r(2r+5)(r-4)(r+5)-2=4r+5 by (r-4)(r+5).
2r(2r+5)(r-4)(r+5)((r-4)(r+5))-2((r-4)(r+5))=4r+5((r-4)(r+5))
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Cancel the common factor of (r-4)(r+5).
Step 3.2.1.1.1
Cancel the common factor.
2r(2r+5)(r-4)(r+5)((r-4)(r+5))-2((r-4)(r+5))=4r+5((r-4)(r+5))
Step 3.2.1.1.2
Rewrite the expression.
2r(2r+5)-2((r-4)(r+5))=4r+5((r-4)(r+5))
2r(2r+5)-2((r-4)(r+5))=4r+5((r-4)(r+5))
Step 3.2.1.2
Apply the distributive property.
2r(2r)+2r⋅5-2((r-4)(r+5))=4r+5((r-4)(r+5))
Step 3.2.1.3
Rewrite using the commutative property of multiplication.
2⋅2r⋅r+2r⋅5-2((r-4)(r+5))=4r+5((r-4)(r+5))
Step 3.2.1.4
Multiply 5 by 2.
2⋅2r⋅r+10r-2((r-4)(r+5))=4r+5((r-4)(r+5))
Step 3.2.1.5
Simplify each term.
Step 3.2.1.5.1
Multiply r by r by adding the exponents.
Step 3.2.1.5.1.1
Move r.
2⋅2(r⋅r)+10r-2((r-4)(r+5))=4r+5((r-4)(r+5))
Step 3.2.1.5.1.2
Multiply r by r.
2⋅2r2+10r-2((r-4)(r+5))=4r+5((r-4)(r+5))
2⋅2r2+10r-2((r-4)(r+5))=4r+5((r-4)(r+5))
Step 3.2.1.5.2
Multiply 2 by 2.
4r2+10r-2((r-4)(r+5))=4r+5((r-4)(r+5))
4r2+10r-2((r-4)(r+5))=4r+5((r-4)(r+5))
Step 3.2.1.6
Expand (r-4)(r+5) using the FOIL Method.
Step 3.2.1.6.1
Apply the distributive property.
4r2+10r-2(r(r+5)-4(r+5))=4r+5((r-4)(r+5))
Step 3.2.1.6.2
Apply the distributive property.
4r2+10r-2(r⋅r+r⋅5-4(r+5))=4r+5((r-4)(r+5))
Step 3.2.1.6.3
Apply the distributive property.
4r2+10r-2(r⋅r+r⋅5-4r-4⋅5)=4r+5((r-4)(r+5))
4r2+10r-2(r⋅r+r⋅5-4r-4⋅5)=4r+5((r-4)(r+5))
Step 3.2.1.7
Simplify and combine like terms.
Step 3.2.1.7.1
Simplify each term.
Step 3.2.1.7.1.1
Multiply r by r.
4r2+10r-2(r2+r⋅5-4r-4⋅5)=4r+5((r-4)(r+5))
Step 3.2.1.7.1.2
Move 5 to the left of r.
4r2+10r-2(r2+5⋅r-4r-4⋅5)=4r+5((r-4)(r+5))
Step 3.2.1.7.1.3
Multiply -4 by 5.
4r2+10r-2(r2+5r-4r-20)=4r+5((r-4)(r+5))
4r2+10r-2(r2+5r-4r-20)=4r+5((r-4)(r+5))
Step 3.2.1.7.2
Subtract 4r from 5r.
4r2+10r-2(r2+r-20)=4r+5((r-4)(r+5))
4r2+10r-2(r2+r-20)=4r+5((r-4)(r+5))
Step 3.2.1.8
Apply the distributive property.
4r2+10r-2r2-2r-2⋅-20=4r+5((r-4)(r+5))
Step 3.2.1.9
Multiply -2 by -20.
4r2+10r-2r2-2r+40=4r+5((r-4)(r+5))
4r2+10r-2r2-2r+40=4r+5((r-4)(r+5))
Step 3.2.2
Simplify by adding terms.
Step 3.2.2.1
Subtract 2r2 from 4r2.
2r2+10r-2r+40=4r+5((r-4)(r+5))
Step 3.2.2.2
Subtract 2r from 10r.
2r2+8r+40=4r+5((r-4)(r+5))
2r2+8r+40=4r+5((r-4)(r+5))
2r2+8r+40=4r+5((r-4)(r+5))
Step 3.3
Simplify the right side.
Step 3.3.1
Cancel the common factor of r+5.
Step 3.3.1.1
Factor r+5 out of (r-4)(r+5).
2r2+8r+40=4r+5((r+5)(r-4))
Step 3.3.1.2
Cancel the common factor.
2r2+8r+40=4r+5((r+5)(r-4))
Step 3.3.1.3
Rewrite the expression.
2r2+8r+40=4(r-4)
2r2+8r+40=4(r-4)
Step 3.3.2
Apply the distributive property.
2r2+8r+40=4r+4⋅-4
Step 3.3.3
Multiply 4 by -4.
2r2+8r+40=4r-16
2r2+8r+40=4r-16
2r2+8r+40=4r-16
Step 4
Step 4.1
Move all terms containing r to the left side of the equation.
Step 4.1.1
Subtract 4r from both sides of the equation.
2r2+8r+40-4r=-16
Step 4.1.2
Subtract 4r from 8r.
2r2+4r+40=-16
2r2+4r+40=-16
Step 4.2
Add 16 to both sides of the equation.
2r2+4r+40+16=0
Step 4.3
Add 40 and 16.
2r2+4r+56=0
Step 4.4
Factor 2 out of 2r2+4r+56.
Step 4.4.1
Factor 2 out of 2r2.
2(r2)+4r+56=0
Step 4.4.2
Factor 2 out of 4r.
2(r2)+2(2r)+56=0
Step 4.4.3
Factor 2 out of 56.
2r2+2(2r)+2⋅28=0
Step 4.4.4
Factor 2 out of 2r2+2(2r).
2(r2+2r)+2⋅28=0
Step 4.4.5
Factor 2 out of 2(r2+2r)+2⋅28.
2(r2+2r+28)=0
2(r2+2r+28)=0
Step 4.5
Divide each term in 2(r2+2r+28)=0 by 2 and simplify.
Step 4.5.1
Divide each term in 2(r2+2r+28)=0 by 2.
2(r2+2r+28)2=02
Step 4.5.2
Simplify the left side.
Step 4.5.2.1
Cancel the common factor of 2.
Step 4.5.2.1.1
Cancel the common factor.
2(r2+2r+28)2=02
Step 4.5.2.1.2
Divide r2+2r+28 by 1.
r2+2r+28=02
r2+2r+28=02
r2+2r+28=02
Step 4.5.3
Simplify the right side.
Step 4.5.3.1
Divide 0 by 2.
r2+2r+28=0
r2+2r+28=0
r2+2r+28=0
Step 4.6
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 4.7
Substitute the values a=1, b=2, and c=28 into the quadratic formula and solve for r.
-2±√22-4⋅(1⋅28)2⋅1
Step 4.8
Simplify.
Step 4.8.1
Simplify the numerator.
Step 4.8.1.1
Raise 2 to the power of 2.
r=-2±√4-4⋅1⋅282⋅1
Step 4.8.1.2
Multiply -4⋅1⋅28.
Step 4.8.1.2.1
Multiply -4 by 1.
r=-2±√4-4⋅282⋅1
Step 4.8.1.2.2
Multiply -4 by 28.
r=-2±√4-1122⋅1
r=-2±√4-1122⋅1
Step 4.8.1.3
Subtract 112 from 4.
r=-2±√-1082⋅1
Step 4.8.1.4
Rewrite -108 as -1(108).
r=-2±√-1⋅1082⋅1
Step 4.8.1.5
Rewrite √-1(108) as √-1⋅√108.
r=-2±√-1⋅√1082⋅1
Step 4.8.1.6
Rewrite √-1 as i.
r=-2±i⋅√1082⋅1
Step 4.8.1.7
Rewrite 108 as 62⋅3.
Step 4.8.1.7.1
Factor 36 out of 108.
r=-2±i⋅√36(3)2⋅1
Step 4.8.1.7.2
Rewrite 36 as 62.
r=-2±i⋅√62⋅32⋅1
r=-2±i⋅√62⋅32⋅1
Step 4.8.1.8
Pull terms out from under the radical.
r=-2±i⋅(6√3)2⋅1
Step 4.8.1.9
Move 6 to the left of i.
r=-2±6i√32⋅1
r=-2±6i√32⋅1
Step 4.8.2
Multiply 2 by 1.
r=-2±6i√32
Step 4.8.3
Simplify -2±6i√32.
r=-1±3i√3
r=-1±3i√3
Step 4.9
The final answer is the combination of both solutions.
r=-1+3i√3,-1-3i√3
r=-1+3i√3,-1-3i√3