Enter a problem...
Basic Math Examples
3(w+4)=-2(4w-3)+6w3(w+4)=−2(4w−3)+6w
Step 1
Since ww is on the right side of the equation, switch the sides so it is on the left side of the equation.
-2(4w-3)+6w=3(w+4)−2(4w−3)+6w=3(w+4)
Step 2
Step 2.1
Simplify each term.
Step 2.1.1
Apply the distributive property.
-2(4w)-2⋅-3+6w=3(w+4)−2(4w)−2⋅−3+6w=3(w+4)
Step 2.1.2
Multiply 44 by -2−2.
-8w-2⋅-3+6w=3(w+4)−8w−2⋅−3+6w=3(w+4)
Step 2.1.3
Multiply -2−2 by -3−3.
-8w+6+6w=3(w+4)−8w+6+6w=3(w+4)
-8w+6+6w=3(w+4)−8w+6+6w=3(w+4)
Step 2.2
Add -8w−8w and 6w6w.
-2w+6=3(w+4)−2w+6=3(w+4)
-2w+6=3(w+4)−2w+6=3(w+4)
Step 3
Step 3.1
Apply the distributive property.
-2w+6=3w+3⋅4−2w+6=3w+3⋅4
Step 3.2
Multiply 33 by 44.
-2w+6=3w+12−2w+6=3w+12
-2w+6=3w+12−2w+6=3w+12
Step 4
Step 4.1
Subtract 3w from both sides of the equation.
-2w+6-3w=12
Step 4.2
Subtract 3w from -2w.
-5w+6=12
-5w+6=12
Step 5
Step 5.1
Subtract 6 from both sides of the equation.
-5w=12-6
Step 5.2
Subtract 6 from 12.
-5w=6
-5w=6
Step 6
Step 6.1
Divide each term in -5w=6 by -5.
-5w-5=6-5
Step 6.2
Simplify the left side.
Step 6.2.1
Cancel the common factor of -5.
Step 6.2.1.1
Cancel the common factor.
-5w-5=6-5
Step 6.2.1.2
Divide w by 1.
w=6-5
w=6-5
w=6-5
Step 6.3
Simplify the right side.
Step 6.3.1
Move the negative in front of the fraction.
w=-65
w=-65
w=-65
Step 7
The result can be shown in multiple forms.
Exact Form:
w=-65
Decimal Form:
w=-1.2
Mixed Number Form:
w=-115