Enter a problem...
Basic Math Examples
36000=5.67⋅10-8⋅0.5026⋅t436000=5.67⋅10−8⋅0.5026⋅t4
Step 1
Rewrite the equation as 5.67⋅10-8⋅0.5026⋅t4=360005.67⋅10−8⋅0.5026⋅t4=36000.
5.67⋅10-8⋅0.5026⋅t4=360005.67⋅10−8⋅0.5026⋅t4=36000
Step 2
Multiply 5.675.67 by 0.50260.5026.
2.849742⋅10-8⋅t4=360002.849742⋅10−8⋅t4=36000
Step 3
Step 3.1
Divide each term in 2.849742⋅10-8⋅t4=360002.849742⋅10−8⋅t4=36000 by 2.849742⋅10-82.849742⋅10−8.
2.849742⋅10-8⋅t42.849742⋅10-8=360002.849742⋅10-82.849742⋅10−8⋅t42.849742⋅10−8=360002.849742⋅10−8
Step 3.2
Simplify the left side.
Step 3.2.1
Cancel the common factor of 2.8497422.849742.
Step 3.2.1.1
Cancel the common factor.
2.849742⋅10-8⋅t42.849742⋅10-8=360002.849742⋅10-8
Step 3.2.1.2
Rewrite the expression.
10-8⋅t410-8=360002.849742⋅10-8
10-8⋅t410-8=360002.849742⋅10-8
Step 3.2.2
Cancel the common factor of 10-8.
Step 3.2.2.1
Cancel the common factor.
10-8⋅t410-8=360002.849742⋅10-8
Step 3.2.2.2
Divide t4 by 1.
t4=360002.849742⋅10-8
t4=360002.849742⋅10-8
t4=360002.849742⋅10-8
Step 3.3
Simplify the right side.
Step 3.3.1
Divide using scientific notation.
Step 3.3.1.1
Group coefficients together and exponents together to divide numbers in scientific notation.
t4=(360002.849742)(110-8)
Step 3.3.1.2
Divide 36000 by 2.849742.
t4=12632.72254119110-8
Step 3.3.1.3
Move 10-8 to the numerator using the negative exponent rule 1b-n=bn.
t4=12632.72254119⋅108
t4=12632.72254119⋅108
Step 3.3.2
Move the decimal point in 12632.72254119 to the left by 4 places and increase the power of 108 by 4.
t4=1.26327225⋅1012
t4=1.26327225⋅1012
t4=1.26327225⋅1012
Step 4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
t=±4√1.26327225⋅1012
Step 5
Step 5.1
Rewrite 4√1.26327225⋅1012 as 4√1.26327225⋅4√1012.
t=±4√1.26327225⋅4√1012
Step 5.2
Evaluate the root.
t=±1.06016689⋅4√1012
Step 5.3
Rewrite 1012 as (103)4.
t=±1.06016689⋅4√(103)4
Step 5.4
Pull terms out from under the radical, assuming positive real numbers.
t=±1.06016689⋅103
t=±1.06016689⋅103
Step 6
Step 6.1
First, use the positive value of the ± to find the first solution.
t=1.06016689⋅103
Step 6.2
Next, use the negative value of the ± to find the second solution.
t=-1.06016689⋅103
Step 6.3
The complete solution is the result of both the positive and negative portions of the solution.
t=1.06016689⋅103,-1.06016689⋅103
t=1.06016689⋅103,-1.06016689⋅103
Step 7
The result can be shown in multiple forms.
Scientific Notation:
t=1.06016689⋅103,-1.06016689⋅103
Expanded Form:
t=1060.16689664,-1060.16689664