Basic Math Examples

Solve for t 36000=5.67*10^-8*0.5026*t^4
36000=5.6710-80.5026t436000=5.671080.5026t4
Step 1
Rewrite the equation as 5.6710-80.5026t4=360005.671080.5026t4=36000.
5.6710-80.5026t4=360005.671080.5026t4=36000
Step 2
Multiply 5.675.67 by 0.50260.5026.
2.84974210-8t4=360002.849742108t4=36000
Step 3
Divide each term in 2.84974210-8t4=360002.849742108t4=36000 by 2.84974210-82.849742108 and simplify.
Tap for more steps...
Step 3.1
Divide each term in 2.84974210-8t4=360002.849742108t4=36000 by 2.84974210-82.849742108.
2.84974210-8t42.84974210-8=360002.84974210-82.849742108t42.849742108=360002.849742108
Step 3.2
Simplify the left side.
Tap for more steps...
Step 3.2.1
Cancel the common factor of 2.8497422.849742.
Tap for more steps...
Step 3.2.1.1
Cancel the common factor.
2.84974210-8t42.84974210-8=360002.84974210-8
Step 3.2.1.2
Rewrite the expression.
10-8t410-8=360002.84974210-8
10-8t410-8=360002.84974210-8
Step 3.2.2
Cancel the common factor of 10-8.
Tap for more steps...
Step 3.2.2.1
Cancel the common factor.
10-8t410-8=360002.84974210-8
Step 3.2.2.2
Divide t4 by 1.
t4=360002.84974210-8
t4=360002.84974210-8
t4=360002.84974210-8
Step 3.3
Simplify the right side.
Tap for more steps...
Step 3.3.1
Divide using scientific notation.
Tap for more steps...
Step 3.3.1.1
Group coefficients together and exponents together to divide numbers in scientific notation.
t4=(360002.849742)(110-8)
Step 3.3.1.2
Divide 36000 by 2.849742.
t4=12632.72254119110-8
Step 3.3.1.3
Move 10-8 to the numerator using the negative exponent rule 1b-n=bn.
t4=12632.72254119108
t4=12632.72254119108
Step 3.3.2
Move the decimal point in 12632.72254119 to the left by 4 places and increase the power of 108 by 4.
t4=1.263272251012
t4=1.263272251012
t4=1.263272251012
Step 4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
t=±41.263272251012
Step 5
Simplify ±41.263272251012.
Tap for more steps...
Step 5.1
Rewrite 41.263272251012 as 41.2632722541012.
t=±41.2632722541012
Step 5.2
Evaluate the root.
t=±1.0601668941012
Step 5.3
Rewrite 1012 as (103)4.
t=±1.060166894(103)4
Step 5.4
Pull terms out from under the radical, assuming positive real numbers.
t=±1.06016689103
t=±1.06016689103
Step 6
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 6.1
First, use the positive value of the ± to find the first solution.
t=1.06016689103
Step 6.2
Next, use the negative value of the ± to find the second solution.
t=-1.06016689103
Step 6.3
The complete solution is the result of both the positive and negative portions of the solution.
t=1.06016689103,-1.06016689103
t=1.06016689103,-1.06016689103
Step 7
The result can be shown in multiple forms.
Scientific Notation:
t=1.06016689103,-1.06016689103
Expanded Form:
t=1060.16689664,-1060.16689664
 [x2  12  π  xdx ]