Enter a problem...
Basic Math Examples
r⋅(R-H)=R√H2+r2r⋅(R−H)=R√H2+r2
Step 1
Step 1.1
Rewrite the equation as R√H2+r2=r⋅(R-H)R√H2+r2=r⋅(R−H).
R√H2+r2=r⋅(R-H)R√H2+r2=r⋅(R−H)
Step 1.2
Simplify r⋅(R-H)r⋅(R−H).
Step 1.2.1
Apply the distributive property.
R√H2+r2=rR+r(-H)R√H2+r2=rR+r(−H)
Step 1.2.2
Rewrite using the commutative property of multiplication.
R√H2+r2=rR-rHR√H2+r2=rR−rH
R√H2+r2=rR-rHR√H2+r2=rR−rH
R√H2+r2=rR-rHR√H2+r2=rR−rH
Step 2
To remove the radical on the left side of the equation, square both sides of the equation.
(R√H2+r2)2=(rR-rH)2(R√H2+r2)2=(rR−rH)2
Step 3
Step 3.1
Use n√ax=axnn√ax=axn to rewrite √H2+r2√H2+r2 as (H2+r2)12(H2+r2)12.
(R(H2+r2)12)2=(rR-rH)2(R(H2+r2)12)2=(rR−rH)2
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify (R(H2+r2)12)2(R(H2+r2)12)2.
Step 3.2.1.1
Apply the product rule to R(H2+r2)12R(H2+r2)12.
R2((H2+r2)12)2=(rR-rH)2R2((H2+r2)12)2=(rR−rH)2
Step 3.2.1.2
Multiply the exponents in ((H2+r2)12)2((H2+r2)12)2.
Step 3.2.1.2.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
R2(H2+r2)12⋅2=(rR-rH)2R2(H2+r2)12⋅2=(rR−rH)2
Step 3.2.1.2.2
Cancel the common factor of 22.
Step 3.2.1.2.2.1
Cancel the common factor.
R2(H2+r2)12⋅2=(rR-rH)2
Step 3.2.1.2.2.2
Rewrite the expression.
R2(H2+r2)1=(rR-rH)2
R2(H2+r2)1=(rR-rH)2
R2(H2+r2)1=(rR-rH)2
Step 3.2.1.3
Simplify.
R2(H2+r2)=(rR-rH)2
Step 3.2.1.4
Apply the distributive property.
R2H2+R2r2=(rR-rH)2
R2H2+R2r2=(rR-rH)2
R2H2+R2r2=(rR-rH)2
Step 3.3
Simplify the right side.
Step 3.3.1
Simplify (rR-rH)2.
Step 3.3.1.1
Rewrite (rR-rH)2 as (rR-rH)(rR-rH).
R2H2+R2r2=(rR-rH)(rR-rH)
Step 3.3.1.2
Expand (rR-rH)(rR-rH) using the FOIL Method.
Step 3.3.1.2.1
Apply the distributive property.
R2H2+R2r2=rR(rR-rH)-rH(rR-rH)
Step 3.3.1.2.2
Apply the distributive property.
R2H2+R2r2=rR(rR)+rR(-rH)-rH(rR-rH)
Step 3.3.1.2.3
Apply the distributive property.
R2H2+R2r2=rR(rR)+rR(-rH)-rH(rR)-rH(-rH)
R2H2+R2r2=rR(rR)+rR(-rH)-rH(rR)-rH(-rH)
Step 3.3.1.3
Simplify and combine like terms.
Step 3.3.1.3.1
Simplify each term.
Step 3.3.1.3.1.1
Multiply r by r by adding the exponents.
Step 3.3.1.3.1.1.1
Move r.
R2H2+R2r2=r⋅rR⋅R+rR(-rH)-rH(rR)-rH(-rH)
Step 3.3.1.3.1.1.2
Multiply r by r.
R2H2+R2r2=r2R⋅R+rR(-rH)-rH(rR)-rH(-rH)
R2H2+R2r2=r2R⋅R+rR(-rH)-rH(rR)-rH(-rH)
Step 3.3.1.3.1.2
Multiply R by R by adding the exponents.
Step 3.3.1.3.1.2.1
Move R.
R2H2+R2r2=r2(R⋅R)+rR(-rH)-rH(rR)-rH(-rH)
Step 3.3.1.3.1.2.2
Multiply R by R.
R2H2+R2r2=r2R2+rR(-rH)-rH(rR)-rH(-rH)
R2H2+R2r2=r2R2+rR(-rH)-rH(rR)-rH(-rH)
Step 3.3.1.3.1.3
Rewrite using the commutative property of multiplication.
R2H2+R2r2=r2R2-rR(rH)-rH(rR)-rH(-rH)
Step 3.3.1.3.1.4
Multiply r by r by adding the exponents.
Step 3.3.1.3.1.4.1
Move r.
R2H2+R2r2=r2R2-(r⋅r)RH-rH(rR)-rH(-rH)
Step 3.3.1.3.1.4.2
Multiply r by r.
R2H2+R2r2=r2R2-r2RH-rH(rR)-rH(-rH)
R2H2+R2r2=r2R2-r2RH-rH(rR)-rH(-rH)
Step 3.3.1.3.1.5
Multiply r by r by adding the exponents.
Step 3.3.1.3.1.5.1
Move r.
R2H2+R2r2=r2R2-r2RH-(r⋅r)HR-rH(-rH)
Step 3.3.1.3.1.5.2
Multiply r by r.
R2H2+R2r2=r2R2-r2RH-r2HR-rH(-rH)
R2H2+R2r2=r2R2-r2RH-r2HR-rH(-rH)
Step 3.3.1.3.1.6
Multiply r by r by adding the exponents.
Step 3.3.1.3.1.6.1
Move r.
R2H2+R2r2=r2R2-r2RH-r2HR-(r⋅r)H(-H)
Step 3.3.1.3.1.6.2
Multiply r by r.
R2H2+R2r2=r2R2-r2RH-r2HR-r2H(-H)
R2H2+R2r2=r2R2-r2RH-r2HR-r2H(-H)
Step 3.3.1.3.1.7
Multiply H by H by adding the exponents.
Step 3.3.1.3.1.7.1
Move H.
R2H2+R2r2=r2R2-r2RH-r2HR-r2(H⋅H)⋅-1
Step 3.3.1.3.1.7.2
Multiply H by H.
R2H2+R2r2=r2R2-r2RH-r2HR-r2H2⋅-1
R2H2+R2r2=r2R2-r2RH-r2HR-r2H2⋅-1
Step 3.3.1.3.1.8
Multiply -r2H2⋅-1.
Step 3.3.1.3.1.8.1
Multiply -1 by -1.
R2H2+R2r2=r2R2-r2RH-r2HR+1r2H2
Step 3.3.1.3.1.8.2
Multiply r2 by 1.
R2H2+R2r2=r2R2-r2RH-r2HR+r2H2
R2H2+R2r2=r2R2-r2RH-r2HR+r2H2
R2H2+R2r2=r2R2-r2RH-r2HR+r2H2
Step 3.3.1.3.2
Subtract r2HR from -r2RH.
Step 3.3.1.3.2.1
Move R.
R2H2+R2r2=r2R2-r2HR-r2HR+r2H2
Step 3.3.1.3.2.2
Subtract r2HR from -r2HR.
R2H2+R2r2=r2R2-2r2HR+r2H2
R2H2+R2r2=r2R2-2r2HR+r2H2
R2H2+R2r2=r2R2-2r2HR+r2H2
R2H2+R2r2=r2R2-2r2HR+r2H2
R2H2+R2r2=r2R2-2r2HR+r2H2
R2H2+R2r2=r2R2-2r2HR+r2H2
Step 4
Step 4.1
Since H is on the right side of the equation, switch the sides so it is on the left side of the equation.
r2R2-2r2HR+r2H2=R2H2+R2r2
Step 4.2
Subtract R2H2 from both sides of the equation.
r2R2-2r2HR+r2H2-R2H2=R2r2
Step 4.3
Move all terms not containing H to the right side of the equation.
Step 4.3.1
Subtract r2R2 from both sides of the equation.
-2r2HR+r2H2-R2H2=R2r2-r2R2
Step 4.3.2
Combine the opposite terms in R2r2-r2R2.
Step 4.3.2.1
Reorder the factors in the terms R2r2 and -r2R2.
-2r2HR+r2H2-R2H2=R2r2-R2r2
Step 4.3.2.2
Subtract R2r2 from R2r2.
-2r2HR+r2H2-R2H2=0
-2r2HR+r2H2-R2H2=0
-2r2HR+r2H2-R2H2=0
Step 4.4
Factor H out of -2r2HR+r2H2-R2H2.
Step 4.4.1
Factor H out of -2r2HR.
H(-2r2R)+r2H2-R2H2=0
Step 4.4.2
Factor H out of r2H2.
H(-2r2R)+H(r2H)-R2H2=0
Step 4.4.3
Factor H out of -R2H2.
H(-2r2R)+H(r2H)+H(-R2H)=0
Step 4.4.4
Factor H out of H(-2r2R)+H(r2H).
H(-2r2R+r2H)+H(-R2H)=0
Step 4.4.5
Factor H out of H(-2r2R+r2H)+H(-R2H).
H(-2r2R+r2H-R2H)=0
H(-2r2R+r2H-R2H)=0
Step 4.5
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
H=0
-2r2R+r2H-R2H=0
Step 4.6
Set H equal to 0.
H=0
Step 4.7
Set -2r2R+r2H-R2H equal to 0 and solve for H.
Step 4.7.1
Set -2r2R+r2H-R2H equal to 0.
-2r2R+r2H-R2H=0
Step 4.7.2
Solve -2r2R+r2H-R2H=0 for H.
Step 4.7.2.1
Add 2r2R to both sides of the equation.
r2H-R2H=2r2R
Step 4.7.2.2
Factor H out of r2H-R2H.
Step 4.7.2.2.1
Factor H out of r2H.
Hr2-R2H=2r2R
Step 4.7.2.2.2
Factor H out of -R2H.
Hr2+H(-R2)=2r2R
Step 4.7.2.2.3
Factor H out of Hr2+H(-R2).
H(r2-R2)=2r2R
H(r2-R2)=2r2R
Step 4.7.2.3
Factor.
Step 4.7.2.3.1
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=r and b=R.
H((r+R)(r-R))=2r2R
Step 4.7.2.3.2
Remove unnecessary parentheses.
H(r+R)(r-R)=2r2R
H(r+R)(r-R)=2r2R
Step 4.7.2.4
Divide each term in H(r+R)(r-R)=2r2R by (r+R)(r-R) and simplify.
Step 4.7.2.4.1
Divide each term in H(r+R)(r-R)=2r2R by (r+R)(r-R).
H(r+R)(r-R)(r+R)(r-R)=2r2R(r+R)(r-R)
Step 4.7.2.4.2
Simplify the left side.
Step 4.7.2.4.2.1
Cancel the common factor of r+R.
Step 4.7.2.4.2.1.1
Cancel the common factor.
H(r+R)(r-R)(r+R)(r-R)=2r2R(r+R)(r-R)
Step 4.7.2.4.2.1.2
Rewrite the expression.
H(r-R)r-R=2r2R(r+R)(r-R)
H(r-R)r-R=2r2R(r+R)(r-R)
Step 4.7.2.4.2.2
Cancel the common factor of r-R.
Step 4.7.2.4.2.2.1
Cancel the common factor.
H(r-R)r-R=2r2R(r+R)(r-R)
Step 4.7.2.4.2.2.2
Divide H by 1.
H=2r2R(r+R)(r-R)
H=2r2R(r+R)(r-R)
H=2r2R(r+R)(r-R)
H=2r2R(r+R)(r-R)
H=2r2R(r+R)(r-R)
H=2r2R(r+R)(r-R)
Step 4.8
The final solution is all the values that make H(-2r2R+r2H-R2H)=0 true.
H=0
H=2r2R(r+R)(r-R)
H=0
H=2r2R(r+R)(r-R)