Enter a problem...
Basic Math Examples
0.03500⋅(9000)=(1+0.03)n-10.03500⋅(9000)=(1+0.03)n−1
Step 1
Rewrite the equation as (1+0.03)n-1=0.03500⋅9000(1+0.03)n−1=0.03500⋅9000.
(1+0.03)n-1=0.03500⋅9000(1+0.03)n−1=0.03500⋅9000
Step 2
Add 11 and 0.030.03.
1.03n-1=0.03500⋅90001.03n−1=0.03500⋅9000
Step 3
Step 3.1
Cancel the common factor of 500500.
Step 3.1.1
Factor 500500 out of 90009000.
1.03n-1=0.03500⋅(500(18))1.03n−1=0.03500⋅(500(18))
Step 3.1.2
Cancel the common factor.
1.03n-1=0.03500⋅(500⋅18)
Step 3.1.3
Rewrite the expression.
1.03n-1=0.03⋅18
1.03n-1=0.03⋅18
Step 3.2
Multiply 0.03 by 18.
1.03n-1=0.54
1.03n-1=0.54
Step 4
Step 4.1
Add 1 to both sides of the equation.
1.03n=0.54+1
Step 4.2
Add 0.54 and 1.
1.03n=1.54
1.03n=1.54
Step 5
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(1.03n)=ln(1.54)
Step 6
Expand ln(1.03n) by moving n outside the logarithm.
nln(1.03)=ln(1.54)
Step 7
Step 7.1
Divide each term in nln(1.03)=ln(1.54) by ln(1.03).
nln(1.03)ln(1.03)=ln(1.54)ln(1.03)
Step 7.2
Simplify the left side.
Step 7.2.1
Cancel the common factor of ln(1.03).
Step 7.2.1.1
Cancel the common factor.
nln(1.03)ln(1.03)=ln(1.54)ln(1.03)
Step 7.2.1.2
Divide n by 1.
n=ln(1.54)ln(1.03)
n=ln(1.54)ln(1.03)
n=ln(1.54)ln(1.03)
n=ln(1.54)ln(1.03)
Step 8
The result can be shown in multiple forms.
Exact Form:
n=ln(1.54)ln(1.03)
Decimal Form:
n=14.60757485…