Enter a problem...
Basic Math Examples
2n+2-n2=1+4n2n+12n+2−n2=1+4n2n+1
Step 1
Take the log of both sides of the equation.
ln(2n+2-n2)=ln(1+4n2n+1)ln(2n+2−n2)=ln(1+4n2n+1)
Step 2
Rewrite ln(2n+2-n2)ln(2n+2−n2) as ln(2n+2-n)-ln(2)ln(2n+2−n)−ln(2).
ln(2n+2-n)-ln(2)=ln(1+4n2n+1)ln(2n+2−n)−ln(2)=ln(1+4n2n+1)
Step 3
Rewrite ln(1+4n2n+1) as ln(1+4n)-ln(2n+1).
ln(2n+2-n)-ln(2)=ln(1+4n)-ln(2n+1)
Step 4
Step 4.1
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy).
ln(2n+2-n2)=ln(1+4n)-ln(2n+1)
Step 4.2
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy).
ln(2n+2-n2)=ln(1+4n2n+1)
Step 4.3
Move all terms containing n to the left side of the equation.
Step 4.3.1
Subtract ln(1+4n2n+1) from both sides of the equation.
ln(2n+2-n2)-ln(1+4n2n+1)=0
Step 4.3.2
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy).
ln(2n+2-n21+4n2n+1)=0
Step 4.3.3
Multiply the numerator by the reciprocal of the denominator.
ln(2n+2-n2⋅2n+11+4n)=0
Step 4.3.4
Multiply 2n+2-n2 by 2n+11+4n.
ln((2n+2-n)(2n+1)2(1+4n))=0
ln((2n+2-n)(2n+1)2(1+4n))=0
Step 4.4
Rewrite ln((2n+2-n)(2n+1)2(1+4n))=0 in exponential form using the definition of a logarithm. If x and b are positive real numbers and b≠1, then logb(x)=y is equivalent to by=x.
e0=(2n+2-n)(2n+1)2(1+4n)
Step 4.5
Cross multiply to remove the fraction.
(2n+2-n)(2n+1)=e0(2(1+4n))
Step 4.6
Simplify e0(2(1+4n)).
Step 4.6.1
Simplify the expression.
Step 4.6.1.1
Anything raised to 0 is 1.
(2n+2-n)(2n+1)=1(2(1+4n))
Step 4.6.1.2
Multiply 2(1+4n) by 1.
(2n+2-n)(2n+1)=2(1+4n)
(2n+2-n)(2n+1)=2(1+4n)
Step 4.6.2
Apply the distributive property.
(2n+2-n)(2n+1)=2⋅1+2⋅4n
Step 4.6.3
Multiply 2 by 1.
(2n+2-n)(2n+1)=2+2⋅4n
Step 4.6.4
Multiply 2⋅4n.
Step 4.6.4.1
Rewrite 4 as 22.
(2n+2-n)(2n+1)=2+2⋅(22)n
Step 4.6.4.2
Apply the power rule and multiply exponents, (am)n=amn.
(2n+2-n)(2n+1)=2+2⋅22n
Step 4.6.4.3
Use the power rule aman=am+n to combine exponents.
(2n+2-n)(2n+1)=2+21+2n
(2n+2-n)(2n+1)=2+21+2n
(2n+2-n)(2n+1)=2+21+2n
Step 4.7
Move all terms containing n to the left side of the equation.
Step 4.7.1
Subtract 21+2n from both sides of the equation.
(2n+2-n)(2n+1)-21+2n=2
Step 4.7.2
Simplify each term.
Step 4.7.2.1
Expand (2n+2-n)(2n+1) using the FOIL Method.
Step 4.7.2.1.1
Apply the distributive property.
2n(2n+1)+2-n(2n+1)-21+2n=2
Step 4.7.2.1.2
Apply the distributive property.
2n⋅2n+2n⋅1+2-n(2n+1)-21+2n=2
Step 4.7.2.1.3
Apply the distributive property.
2n⋅2n+2n⋅1+2-n⋅2n+2-n⋅1-21+2n=2
2n⋅2n+2n⋅1+2-n⋅2n+2-n⋅1-21+2n=2
Step 4.7.2.2
Simplify each term.
Step 4.7.2.2.1
Multiply 2n by 2n by adding the exponents.
Step 4.7.2.2.1.1
Use the power rule aman=am+n to combine exponents.
2n+n+2n⋅1+2-n⋅2n+2-n⋅1-21+2n=2
Step 4.7.2.2.1.2
Add n and n.
22n+2n⋅1+2-n⋅2n+2-n⋅1-21+2n=2
22n+2n⋅1+2-n⋅2n+2-n⋅1-21+2n=2
Step 4.7.2.2.2
Multiply 2n by 1.
22n+2n+2-n⋅2n+2-n⋅1-21+2n=2
Step 4.7.2.2.3
Multiply 2-n by 2n by adding the exponents.
Step 4.7.2.2.3.1
Use the power rule aman=am+n to combine exponents.
22n+2n+2-n+n+2-n⋅1-21+2n=2
Step 4.7.2.2.3.2
Add -n and n.
22n+2n+20+2-n⋅1-21+2n=2
22n+2n+20+2-n⋅1-21+2n=2
Step 4.7.2.2.4
Simplify 20.
22n+2n+1+2-n⋅1-21+2n=2
Step 4.7.2.2.5
Multiply 2-n by 1.
22n+2n+1+2-n-21+2n=2
22n+2n+1+2-n-21+2n=2
22n+2n+1+2-n-21+2n=2
22n+2n+1+2-n-21+2n=2
Step 4.8
Move all terms not containing n to the right side of the equation.
Step 4.8.1
Subtract 1 from both sides of the equation.
22n+2n+2-n-21+2n=2-1
Step 4.8.2
Subtract 1 from 2.
22n+2n+2-n-21+2n=1
22n+2n+2-n-21+2n=1
Step 4.9
Rewrite 21+2n as 21⋅22n.
22n+2n+2-n-(2⋅22n)=1
Step 4.10
Rewrite 22n as exponentiation.
(2n)2+2n+2-n-(2⋅22n)=1
Step 4.11
Rewrite 2-n as exponentiation.
(2n)2+2n+(2n)-1-(2⋅22n)=1
Step 4.12
Rewrite 22n as exponentiation.
(2n)2+2n+(2n)-1-(2⋅(2n)2)=1
Step 4.13
Remove parentheses.
(2n)2+2n+(2n)-1-2(2n)2=1
Step 4.14
Substitute u for 2n.
u2+u+u-1-2u2=1
Step 4.15
Simplify each term.
Step 4.15.1
Rewrite the expression using the negative exponent rule b-n=1bn.
u2+u+1u-2u2=1
Step 4.15.2
Evaluate the exponent.
u2+u+1u-1⋅(2u2)=1
Step 4.15.3
Multiply -1 by 2.
u2+u+1u-2u2=1
u2+u+1u-2u2=1
Step 4.16
Subtract 2u2 from u2.
-u2+u+1u=1
Step 4.17
Solve for u.
Step 4.17.1
Find the LCD of the terms in the equation.
Step 4.17.1.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
1,1,u,1
Step 4.17.1.2
The LCM of one and any expression is the expression.
u
u
Step 4.17.2
Multiply each term in -u2+u+1u=1 by u to eliminate the fractions.
Step 4.17.2.1
Multiply each term in -u2+u+1u=1 by u.
-u2u+u⋅u+1uu=1u
Step 4.17.2.2
Simplify the left side.
Step 4.17.2.2.1
Simplify each term.
Step 4.17.2.2.1.1
Multiply u2 by u by adding the exponents.
Step 4.17.2.2.1.1.1
Move u.
-(u⋅u2)+u⋅u+1uu=1u
Step 4.17.2.2.1.1.2
Multiply u by u2.
Step 4.17.2.2.1.1.2.1
Raise u to the power of 1.
-(u1u2)+u⋅u+1uu=1u
Step 4.17.2.2.1.1.2.2
Use the power rule aman=am+n to combine exponents.
-u1+2+u⋅u+1uu=1u
-u1+2+u⋅u+1uu=1u
Step 4.17.2.2.1.1.3
Add 1 and 2.
-u3+u⋅u+1uu=1u
-u3+u⋅u+1uu=1u
Step 4.17.2.2.1.2
Multiply u by u.
-u3+u2+1uu=1u
Step 4.17.2.2.1.3
Cancel the common factor of u.
Step 4.17.2.2.1.3.1
Cancel the common factor.
-u3+u2+1uu=1u
Step 4.17.2.2.1.3.2
Rewrite the expression.
-u3+u2+1=1u
-u3+u2+1=1u
-u3+u2+1=1u
-u3+u2+1=1u
Step 4.17.2.3
Simplify the right side.
Step 4.17.2.3.1
Multiply u by 1.
-u3+u2+1=u
-u3+u2+1=u
-u3+u2+1=u
Step 4.17.3
Solve the equation.
Step 4.17.3.1
Subtract u from both sides of the equation.
-u3+u2+1-u=0
Step 4.17.3.2
Factor the left side of the equation.
Step 4.17.3.2.1
Reorder terms.
-u3+u2-u+1=0
Step 4.17.3.2.2
Factor out the greatest common factor from each group.
Step 4.17.3.2.2.1
Group the first two terms and the last two terms.
(-u3+u2)-u+1=0
Step 4.17.3.2.2.2
Factor out the greatest common factor (GCF) from each group.
u2(-u+1)+1(-u+1)=0
u2(-u+1)+1(-u+1)=0
Step 4.17.3.2.3
Factor the polynomial by factoring out the greatest common factor, -u+1.
(-u+1)(u2+1)=0
(-u+1)(u2+1)=0
Step 4.17.3.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
-u+1=0
u2+1=0
Step 4.17.3.4
Set -u+1 equal to 0 and solve for u.
Step 4.17.3.4.1
Set -u+1 equal to 0.
-u+1=0
Step 4.17.3.4.2
Solve -u+1=0 for u.
Step 4.17.3.4.2.1
Subtract 1 from both sides of the equation.
-u=-1
Step 4.17.3.4.2.2
Divide each term in -u=-1 by -1 and simplify.
Step 4.17.3.4.2.2.1
Divide each term in -u=-1 by -1.
-u-1=-1-1
Step 4.17.3.4.2.2.2
Simplify the left side.
Step 4.17.3.4.2.2.2.1
Dividing two negative values results in a positive value.
u1=-1-1
Step 4.17.3.4.2.2.2.2
Divide u by 1.
u=-1-1
u=-1-1
Step 4.17.3.4.2.2.3
Simplify the right side.
Step 4.17.3.4.2.2.3.1
Divide -1 by -1.
u=1
u=1
u=1
u=1
u=1
Step 4.17.3.5
Set u2+1 equal to 0 and solve for u.
Step 4.17.3.5.1
Set u2+1 equal to 0.
u2+1=0
Step 4.17.3.5.2
Solve u2+1=0 for u.
Step 4.17.3.5.2.1
Subtract 1 from both sides of the equation.
u2=-1
Step 4.17.3.5.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
u=±√-1
Step 4.17.3.5.2.3
Rewrite √-1 as i.
u=±i
Step 4.17.3.5.2.4
The complete solution is the result of both the positive and negative portions of the solution.
Step 4.17.3.5.2.4.1
First, use the positive value of the ± to find the first solution.
u=i
Step 4.17.3.5.2.4.2
Next, use the negative value of the ± to find the second solution.
u=-i
Step 4.17.3.5.2.4.3
The complete solution is the result of both the positive and negative portions of the solution.
u=i,-i
u=i,-i
u=i,-i
u=i,-i
Step 4.17.3.6
The final solution is all the values that make (-u+1)(u2+1)=0 true.
u=1,i,-i
u=1,i,-i
u=1,i,-i
Step 4.18
Substitute 1 for u in u=2n.
1=2n
Step 4.19
Solve 1=2n.
Step 4.19.1
Rewrite the equation as 2n=1.
2n=1
Step 4.19.2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(2n)=ln(1)
Step 4.19.3
Expand ln(2n) by moving n outside the logarithm.
nln(2)=ln(1)
Step 4.19.4
Simplify the right side.
Step 4.19.4.1
The natural logarithm of 1 is 0.
nln(2)=0
nln(2)=0
Step 4.19.5
Divide each term in nln(2)=0 by ln(2) and simplify.
Step 4.19.5.1
Divide each term in nln(2)=0 by ln(2).
nln(2)ln(2)=0ln(2)
Step 4.19.5.2
Simplify the left side.
Step 4.19.5.2.1
Cancel the common factor of ln(2).
Step 4.19.5.2.1.1
Cancel the common factor.
nln(2)ln(2)=0ln(2)
Step 4.19.5.2.1.2
Divide n by 1.
n=0ln(2)
n=0ln(2)
n=0ln(2)
Step 4.19.5.3
Simplify the right side.
Step 4.19.5.3.1
Divide 0 by ln(2).
n=0
n=0
n=0
n=0
Step 4.20
Substitute i for u in u=2n.
i=2n
Step 4.21
Solve i=2n.
Step 4.21.1
Rewrite the equation as 2n=i.
2n=i
Step 4.21.2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(2n)=ln(i)
Step 4.21.3
Expand ln(2n) by moving n outside the logarithm.
nln(2)=ln(i)
Step 4.21.4
Divide each term in nln(2)=ln(i) by ln(2) and simplify.
Step 4.21.4.1
Divide each term in nln(2)=ln(i) by ln(2).
nln(2)ln(2)=ln(i)ln(2)
Step 4.21.4.2
Simplify the left side.
Step 4.21.4.2.1
Cancel the common factor of ln(2).
Step 4.21.4.2.1.1
Cancel the common factor.
nln(2)ln(2)=ln(i)ln(2)
Step 4.21.4.2.1.2
Divide n by 1.
n=ln(i)ln(2)
n=ln(i)ln(2)
n=ln(i)ln(2)
n=ln(i)ln(2)
n=ln(i)ln(2)
Step 4.22
Substitute -i for u in u=2n.
-i=2n
Step 4.23
Solve -i=2n.
Step 4.23.1
Rewrite the equation as 2n=-i.
2n=-i
Step 4.23.2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(2n)=ln(-i)
Step 4.23.3
The equation cannot be solved because ln(-i) is undefined.
Undefined
Step 4.23.4
There is no solution for 2n=-i
No solution
No solution
Step 4.24
List the solutions that makes the equation true.
n=0,ln(i)ln(2)
n=0,ln(i)ln(2)