Basic Math Examples

Solve for n 11+10(4-6n)=-9n-6(n-1)
11+10(4-6n)=-9n-6(n-1)11+10(46n)=9n6(n1)
Step 1
Since nn is on the right side of the equation, switch the sides so it is on the left side of the equation.
-9n-6(n-1)=11+10(4-6n)9n6(n1)=11+10(46n)
Step 2
Simplify -9n-6(n-1)9n6(n1).
Tap for more steps...
Step 2.1
Simplify each term.
Tap for more steps...
Step 2.1.1
Apply the distributive property.
-9n-6n-6-1=11+10(4-6n)9n6n61=11+10(46n)
Step 2.1.2
Multiply -66 by -11.
-9n-6n+6=11+10(4-6n)9n6n+6=11+10(46n)
-9n-6n+6=11+10(4-6n)9n6n+6=11+10(46n)
Step 2.2
Subtract 6n6n from -9n9n.
-15n+6=11+10(4-6n)15n+6=11+10(46n)
-15n+6=11+10(4-6n)15n+6=11+10(46n)
Step 3
Simplify 11+10(4-6n)11+10(46n).
Tap for more steps...
Step 3.1
Simplify each term.
Tap for more steps...
Step 3.1.1
Apply the distributive property.
-15n+6=11+104+10(-6n)15n+6=11+104+10(6n)
Step 3.1.2
Multiply 1010 by 44.
-15n+6=11+40+10(-6n)15n+6=11+40+10(6n)
Step 3.1.3
Multiply -66 by 1010.
-15n+6=11+40-60n15n+6=11+4060n
-15n+6=11+40-60n15n+6=11+4060n
Step 3.2
Add 1111 and 4040.
-15n+6=51-60n15n+6=5160n
-15n+6=51-60n15n+6=5160n
Step 4
Move all terms containing nn to the left side of the equation.
Tap for more steps...
Step 4.1
Add 60n60n to both sides of the equation.
-15n+6+60n=5115n+6+60n=51
Step 4.2
Add -15n15n and 60n60n.
45n+6=5145n+6=51
45n+6=5145n+6=51
Step 5
Move all terms not containing nn to the right side of the equation.
Tap for more steps...
Step 5.1
Subtract 66 from both sides of the equation.
45n=51-645n=516
Step 5.2
Subtract 66 from 5151.
45n=4545n=45
45n=4545n=45
Step 6
Divide each term in 45n=4545n=45 by 4545 and simplify.
Tap for more steps...
Step 6.1
Divide each term in 45n=4545n=45 by 4545.
45n45=454545n45=4545
Step 6.2
Simplify the left side.
Tap for more steps...
Step 6.2.1
Cancel the common factor of 4545.
Tap for more steps...
Step 6.2.1.1
Cancel the common factor.
45n45=4545
Step 6.2.1.2
Divide n by 1.
n=4545
n=4545
n=4545
Step 6.3
Simplify the right side.
Tap for more steps...
Step 6.3.1
Divide 45 by 45.
n=1
n=1
n=1
 [x2  12  π  xdx ]