Basic Math Examples

Solve for b -b^4+3b^2+ square root of 10=0
-b4+3b2+10=0b4+3b2+10=0
Step 1
Substitute u=b2u=b2 into the equation. This will make the quadratic formula easy to use.
-u2+3u+10=0u2+3u+10=0
u=b2u=b2
Step 2
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2ab±b24(ac)2a
Step 3
Substitute the values a=-1a=1, b=3b=3, and c=10c=10 into the quadratic formula and solve for uu.
-3±32-4(-110)2-13±324(110)21
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Raise 33 to the power of 22.
u=-3±9-4-1102-1u=3±9411021
Step 4.1.2
Multiply -44 by -11.
u=-3±9+4102-1u=3±9+41021
u=-3±9+4102-1u=3±9+41021
Step 4.2
Multiply 22 by -11.
u=-3±9+410-2u=3±9+4102
Step 4.3
Simplify -3±9+410-23±9+4102.
u=3±9+4102u=3±9+4102
u=3±9+4102u=3±9+4102
Step 5
The final answer is the combination of both solutions.
u=3+9+4102,3-9+4102u=3+9+4102,39+4102
Step 6
Substitute the real value of u=b2u=b2 back into the solved equation.
b2=3.82643023b2=3.82643023
(b2)1=-0.82643023(b2)1=0.82643023
Step 7
Solve the first equation for bb.
b2=3.82643023b2=3.82643023
Step 8
Solve the equation for bb.
Tap for more steps...
Step 8.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
b=±3.82643023b=±3.82643023
Step 8.2
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 8.2.1
First, use the positive value of the ±± to find the first solution.
b=3.82643023b=3.82643023
Step 8.2.2
Next, use the negative value of the ±± to find the second solution.
b=-3.82643023b=3.82643023
Step 8.2.3
The complete solution is the result of both the positive and negative portions of the solution.
b=3.82643023,-3.82643023b=3.82643023,3.82643023
b=3.82643023,-3.82643023b=3.82643023,3.82643023
b=3.82643023,-3.82643023b=3.82643023,3.82643023
Step 9
Solve the second equation for bb.
(b2)1=-0.82643023(b2)1=0.82643023
Step 10
Solve the equation for bb.
Tap for more steps...
Step 10.1
Remove parentheses.
b2=-0.82643023b2=0.82643023
Step 10.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
b=±-0.82643023b=±0.82643023
Step 10.3
Simplify ±-0.82643023±0.82643023.
Tap for more steps...
Step 10.3.1
Rewrite -0.826430230.82643023 as -1(0.82643023)1(0.82643023).
b=±-1(0.82643023)b=±1(0.82643023)
Step 10.3.2
Rewrite -1(0.82643023)1(0.82643023) as -10.8264302310.82643023.
b=±-10.82643023b=±10.82643023
Step 10.3.3
Rewrite -11 as ii.
b=±i0.82643023b=±i0.82643023
b=±i0.82643023b=±i0.82643023
Step 10.4
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 10.4.1
First, use the positive value of the ±± to find the first solution.
b=i0.82643023b=i0.82643023
Step 10.4.2
Next, use the negative value of the ±± to find the second solution.
b=-i0.82643023b=i0.82643023
Step 10.4.3
The complete solution is the result of both the positive and negative portions of the solution.
b=i0.82643023,-i0.82643023b=i0.82643023,i0.82643023
b=i0.82643023,-i0.82643023b=i0.82643023,i0.82643023
b=i0.82643023,-i0.82643023b=i0.82643023,i0.82643023
Step 11
The solution to -b4+3b2+10=0b4+3b2+10=0 is b=3.82643023,-3.82643023,i0.82643023,-i0.82643023b=3.82643023,3.82643023,i0.82643023,i0.82643023.
b=3.82643023,-3.82643023,i0.82643023,-i0.82643023b=3.82643023,3.82643023,i0.82643023,i0.82643023
 [x2  12  π  xdx ]  x2  12  π  xdx