Enter a problem...
Basic Math Examples
-b4+3b2+√10=0−b4+3b2+√10=0
Step 1
Substitute u=b2u=b2 into the equation. This will make the quadratic formula easy to use.
-u2+3u+√10=0−u2+3u+√10=0
u=b2u=b2
Step 2
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a−b±√b2−4(ac)2a
Step 3
Substitute the values a=-1a=−1, b=3b=3, and c=√10c=√10 into the quadratic formula and solve for uu.
-3±√32-4⋅(-1⋅√10)2⋅-1−3±√32−4⋅(−1⋅√10)2⋅−1
Step 4
Step 4.1
Simplify the numerator.
Step 4.1.1
Raise 33 to the power of 22.
u=-3±√9-4⋅-1⋅√102⋅-1u=−3±√9−4⋅−1⋅√102⋅−1
Step 4.1.2
Multiply -4−4 by -1−1.
u=-3±√9+4√102⋅-1u=−3±√9+4√102⋅−1
u=-3±√9+4√102⋅-1u=−3±√9+4√102⋅−1
Step 4.2
Multiply 22 by -1−1.
u=-3±√9+4√10-2u=−3±√9+4√10−2
Step 4.3
Simplify -3±√9+4√10-2−3±√9+4√10−2.
u=3±√9+4√102u=3±√9+4√102
u=3±√9+4√102u=3±√9+4√102
Step 5
The final answer is the combination of both solutions.
u=3+√9+4√102,3-√9+4√102u=3+√9+4√102,3−√9+4√102
Step 6
Substitute the real value of u=b2u=b2 back into the solved equation.
b2=3.82643023b2=3.82643023
(b2)1=-0.82643023(b2)1=−0.82643023
Step 7
Solve the first equation for bb.
b2=3.82643023b2=3.82643023
Step 8
Step 8.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
b=±√3.82643023b=±√3.82643023
Step 8.2
The complete solution is the result of both the positive and negative portions of the solution.
Step 8.2.1
First, use the positive value of the ±± to find the first solution.
b=√3.82643023b=√3.82643023
Step 8.2.2
Next, use the negative value of the ±± to find the second solution.
b=-√3.82643023b=−√3.82643023
Step 8.2.3
The complete solution is the result of both the positive and negative portions of the solution.
b=√3.82643023,-√3.82643023b=√3.82643023,−√3.82643023
b=√3.82643023,-√3.82643023b=√3.82643023,−√3.82643023
b=√3.82643023,-√3.82643023b=√3.82643023,−√3.82643023
Step 9
Solve the second equation for bb.
(b2)1=-0.82643023(b2)1=−0.82643023
Step 10
Step 10.1
Remove parentheses.
b2=-0.82643023b2=−0.82643023
Step 10.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
b=±√-0.82643023b=±√−0.82643023
Step 10.3
Simplify ±√-0.82643023±√−0.82643023.
Step 10.3.1
Rewrite -0.82643023−0.82643023 as -1(0.82643023)−1(0.82643023).
b=±√-1(0.82643023)b=±√−1(0.82643023)
Step 10.3.2
Rewrite √-1(0.82643023)√−1(0.82643023) as √-1⋅√0.82643023√−1⋅√0.82643023.
b=±√-1⋅√0.82643023b=±√−1⋅√0.82643023
Step 10.3.3
Rewrite √-1√−1 as ii.
b=±i√0.82643023b=±i√0.82643023
b=±i√0.82643023b=±i√0.82643023
Step 10.4
The complete solution is the result of both the positive and negative portions of the solution.
Step 10.4.1
First, use the positive value of the ±± to find the first solution.
b=i√0.82643023b=i√0.82643023
Step 10.4.2
Next, use the negative value of the ±± to find the second solution.
b=-i√0.82643023b=−i√0.82643023
Step 10.4.3
The complete solution is the result of both the positive and negative portions of the solution.
b=i√0.82643023,-i√0.82643023b=i√0.82643023,−i√0.82643023
b=i√0.82643023,-i√0.82643023b=i√0.82643023,−i√0.82643023
b=i√0.82643023,-i√0.82643023b=i√0.82643023,−i√0.82643023
Step 11
The solution to -b4+3b2+√10=0−b4+3b2+√10=0 is b=√3.82643023,-√3.82643023,i√0.82643023,-i√0.82643023b=√3.82643023,−√3.82643023,i√0.82643023,−i√0.82643023.
b=√3.82643023,-√3.82643023,i√0.82643023,-i√0.82643023b=√3.82643023,−√3.82643023,i√0.82643023,−i√0.82643023