Enter a problem...
Basic Math Examples
(a+2)(a+3)(a-5)=44(a+2)(a+3)(a−5)=44
Step 1
Step 1.1
Expand (a+2)(a+3)(a+2)(a+3) using the FOIL Method.
Step 1.1.1
Apply the distributive property.
(a(a+3)+2(a+3))(a-5)=44(a(a+3)+2(a+3))(a−5)=44
Step 1.1.2
Apply the distributive property.
(a⋅a+a⋅3+2(a+3))(a-5)=44(a⋅a+a⋅3+2(a+3))(a−5)=44
Step 1.1.3
Apply the distributive property.
(a⋅a+a⋅3+2a+2⋅3)(a-5)=44(a⋅a+a⋅3+2a+2⋅3)(a−5)=44
(a⋅a+a⋅3+2a+2⋅3)(a-5)=44(a⋅a+a⋅3+2a+2⋅3)(a−5)=44
Step 1.2
Simplify and combine like terms.
Step 1.2.1
Simplify each term.
Step 1.2.1.1
Multiply aa by aa.
(a2+a⋅3+2a+2⋅3)(a-5)=44(a2+a⋅3+2a+2⋅3)(a−5)=44
Step 1.2.1.2
Move 33 to the left of aa.
(a2+3⋅a+2a+2⋅3)(a-5)=44(a2+3⋅a+2a+2⋅3)(a−5)=44
Step 1.2.1.3
Multiply 22 by 33.
(a2+3a+2a+6)(a-5)=44(a2+3a+2a+6)(a−5)=44
(a2+3a+2a+6)(a-5)=44(a2+3a+2a+6)(a−5)=44
Step 1.2.2
Add 3a3a and 2a2a.
(a2+5a+6)(a-5)=44(a2+5a+6)(a−5)=44
(a2+5a+6)(a-5)=44(a2+5a+6)(a−5)=44
Step 1.3
Expand (a2+5a+6)(a-5)(a2+5a+6)(a−5) by multiplying each term in the first expression by each term in the second expression.
a2a+a2⋅-5+5a⋅a+5a⋅-5+6a+6⋅-5=44a2a+a2⋅−5+5a⋅a+5a⋅−5+6a+6⋅−5=44
Step 1.4
Simplify terms.
Step 1.4.1
Simplify each term.
Step 1.4.1.1
Multiply a2a2 by aa by adding the exponents.
Step 1.4.1.1.1
Multiply a2a2 by aa.
Step 1.4.1.1.1.1
Raise aa to the power of 11.
a2a1+a2⋅-5+5a⋅a+5a⋅-5+6a+6⋅-5=44a2a1+a2⋅−5+5a⋅a+5a⋅−5+6a+6⋅−5=44
Step 1.4.1.1.1.2
Use the power rule aman=am+naman=am+n to combine exponents.
a2+1+a2⋅-5+5a⋅a+5a⋅-5+6a+6⋅-5=44a2+1+a2⋅−5+5a⋅a+5a⋅−5+6a+6⋅−5=44
a2+1+a2⋅-5+5a⋅a+5a⋅-5+6a+6⋅-5=44a2+1+a2⋅−5+5a⋅a+5a⋅−5+6a+6⋅−5=44
Step 1.4.1.1.2
Add 22 and 11.
a3+a2⋅-5+5a⋅a+5a⋅-5+6a+6⋅-5=44a3+a2⋅−5+5a⋅a+5a⋅−5+6a+6⋅−5=44
a3+a2⋅-5+5a⋅a+5a⋅-5+6a+6⋅-5=44a3+a2⋅−5+5a⋅a+5a⋅−5+6a+6⋅−5=44
Step 1.4.1.2
Move -5−5 to the left of a2a2.
a3-5⋅a2+5a⋅a+5a⋅-5+6a+6⋅-5=44a3−5⋅a2+5a⋅a+5a⋅−5+6a+6⋅−5=44
Step 1.4.1.3
Multiply aa by aa by adding the exponents.
Step 1.4.1.3.1
Move aa.
a3-5a2+5(a⋅a)+5a⋅-5+6a+6⋅-5=44a3−5a2+5(a⋅a)+5a⋅−5+6a+6⋅−5=44
Step 1.4.1.3.2
Multiply aa by aa.
a3-5a2+5a2+5a⋅-5+6a+6⋅-5=44a3−5a2+5a2+5a⋅−5+6a+6⋅−5=44
a3-5a2+5a2+5a⋅-5+6a+6⋅-5=44a3−5a2+5a2+5a⋅−5+6a+6⋅−5=44
Step 1.4.1.4
Multiply -5−5 by 55.
a3-5a2+5a2-25a+6a+6⋅-5=44a3−5a2+5a2−25a+6a+6⋅−5=44
Step 1.4.1.5
Multiply 6 by -5.
a3-5a2+5a2-25a+6a-30=44
a3-5a2+5a2-25a+6a-30=44
Step 1.4.2
Simplify by adding terms.
Step 1.4.2.1
Combine the opposite terms in a3-5a2+5a2-25a+6a-30.
Step 1.4.2.1.1
Add -5a2 and 5a2.
a3+0-25a+6a-30=44
Step 1.4.2.1.2
Add a3 and 0.
a3-25a+6a-30=44
a3-25a+6a-30=44
Step 1.4.2.2
Add -25a and 6a.
a3-19a-30=44
a3-19a-30=44
a3-19a-30=44
a3-19a-30=44
Step 2
Graph each side of the equation. The solution is the x-value of the point of intersection.
a≈5.66283201
Step 3