Basic Math Examples

Solve for A cos(A)+sin(A)=tan(A)+1÷(sec(A))
cos(A)+sin(A)=tan(A)+1÷sec(A)cos(A)+sin(A)=tan(A)+1÷sec(A)
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Rewrite the division as a fraction.
cos(A)+sin(A)=tan(A)+1sec(A)cos(A)+sin(A)=tan(A)+1sec(A)
Step 1.2
Rewrite sec(A)sec(A) in terms of sines and cosines.
cos(A)+sin(A)=tan(A)+11cos(A)cos(A)+sin(A)=tan(A)+11cos(A)
Step 1.3
Multiply by the reciprocal of the fraction to divide by 1cos(A)1cos(A).
cos(A)+sin(A)=tan(A)+1cos(A)cos(A)+sin(A)=tan(A)+1cos(A)
Step 1.4
Multiply cos(A)cos(A) by 11.
cos(A)+sin(A)=tan(A)+cos(A)cos(A)+sin(A)=tan(A)+cos(A)
cos(A)+sin(A)=tan(A)+cos(A)cos(A)+sin(A)=tan(A)+cos(A)
Step 2
Graph each side of the equation. The solution is the x-value of the point of intersection.
A0,-3.14159265,3.14159265,-6.284375,6.284375,-9.42477796,9.42477796A0,3.14159265,3.14159265,6.284375,6.284375,9.42477796,9.42477796
Step 3
 [x2  12  π  xdx ]  x2  12  π  xdx