Enter a problem...
Basic Math Examples
(c-d)2(c−d)2
Step 1
Rewrite (c-d)2(c−d)2 as (c-d)(c-d)(c−d)(c−d).
(c-d)(c-d)(c−d)(c−d)
Step 2
Step 2.1
Apply the distributive property.
c(c-d)-d(c-d)c(c−d)−d(c−d)
Step 2.2
Apply the distributive property.
c⋅c+c(-d)-d(c-d)c⋅c+c(−d)−d(c−d)
Step 2.3
Apply the distributive property.
c⋅c+c(-d)-dc-d(-d)c⋅c+c(−d)−dc−d(−d)
c⋅c+c(-d)-dc-d(-d)c⋅c+c(−d)−dc−d(−d)
Step 3
Step 3.1
Simplify each term.
Step 3.1.1
Multiply cc by cc.
c2+c(-d)-dc-d(-d)c2+c(−d)−dc−d(−d)
Step 3.1.2
Rewrite using the commutative property of multiplication.
c2-cd-dc-d(-d)c2−cd−dc−d(−d)
Step 3.1.3
Rewrite using the commutative property of multiplication.
c2-cd-dc-1⋅-1d⋅dc2−cd−dc−1⋅−1d⋅d
Step 3.1.4
Multiply dd by dd by adding the exponents.
Step 3.1.4.1
Move dd.
c2-cd-dc-1⋅-1(d⋅d)c2−cd−dc−1⋅−1(d⋅d)
Step 3.1.4.2
Multiply dd by dd.
c2-cd-dc-1⋅-1d2c2−cd−dc−1⋅−1d2
c2-cd-dc-1⋅-1d2c2−cd−dc−1⋅−1d2
Step 3.1.5
Multiply -1−1 by -1−1.
c2-cd-dc+1d2c2−cd−dc+1d2
Step 3.1.6
Multiply d2d2 by 11.
c2-cd-dc+d2c2−cd−dc+d2
c2-cd-dc+d2c2−cd−dc+d2
Step 3.2
Subtract dcdc from -cd−cd.
Step 3.2.1
Move dd.
c2-cd-1cd+d2c2−cd−1cd+d2
Step 3.2.2
Subtract cdcd from -cd−cd.
c2-2cd+d2c2−2cd+d2
c2-2cd+d2c2−2cd+d2
c2-2cd+d2c2−2cd+d2