Basic Math Examples

Multiply (c-d)^2
(c-d)2(cd)2
Step 1
Rewrite (c-d)2(cd)2 as (c-d)(c-d)(cd)(cd).
(c-d)(c-d)(cd)(cd)
Step 2
Expand (c-d)(c-d)(cd)(cd) using the FOIL Method.
Tap for more steps...
Step 2.1
Apply the distributive property.
c(c-d)-d(c-d)c(cd)d(cd)
Step 2.2
Apply the distributive property.
cc+c(-d)-d(c-d)cc+c(d)d(cd)
Step 2.3
Apply the distributive property.
cc+c(-d)-dc-d(-d)cc+c(d)dcd(d)
cc+c(-d)-dc-d(-d)cc+c(d)dcd(d)
Step 3
Simplify and combine like terms.
Tap for more steps...
Step 3.1
Simplify each term.
Tap for more steps...
Step 3.1.1
Multiply cc by cc.
c2+c(-d)-dc-d(-d)c2+c(d)dcd(d)
Step 3.1.2
Rewrite using the commutative property of multiplication.
c2-cd-dc-d(-d)c2cddcd(d)
Step 3.1.3
Rewrite using the commutative property of multiplication.
c2-cd-dc-1-1ddc2cddc11dd
Step 3.1.4
Multiply dd by dd by adding the exponents.
Tap for more steps...
Step 3.1.4.1
Move dd.
c2-cd-dc-1-1(dd)c2cddc11(dd)
Step 3.1.4.2
Multiply dd by dd.
c2-cd-dc-1-1d2c2cddc11d2
c2-cd-dc-1-1d2c2cddc11d2
Step 3.1.5
Multiply -11 by -11.
c2-cd-dc+1d2c2cddc+1d2
Step 3.1.6
Multiply d2d2 by 11.
c2-cd-dc+d2c2cddc+d2
c2-cd-dc+d2c2cddc+d2
Step 3.2
Subtract dcdc from -cdcd.
Tap for more steps...
Step 3.2.1
Move dd.
c2-cd-1cd+d2c2cd1cd+d2
Step 3.2.2
Subtract cdcd from -cdcd.
c2-2cd+d2c22cd+d2
c2-2cd+d2c22cd+d2
c2-2cd+d2c22cd+d2
 [x2  12  π  xdx ]  x2  12  π  xdx