Basic Math Examples

Multiply (a-3b)^3
(a-3b)3(a3b)3
Step 1
Use the Binomial Theorem.
a3+3a2(-3b)+3a(-3b)2+(-3b)3a3+3a2(3b)+3a(3b)2+(3b)3
Step 2
Simplify each term.
Tap for more steps...
Step 2.1
Rewrite using the commutative property of multiplication.
a3+3-3a2b+3a(-3b)2+(-3b)3a3+33a2b+3a(3b)2+(3b)3
Step 2.2
Multiply 33 by -33.
a3-9a2b+3a(-3b)2+(-3b)3a39a2b+3a(3b)2+(3b)3
Step 2.3
Apply the product rule to -3b3b.
a3-9a2b+3a((-3)2b2)+(-3b)3a39a2b+3a((3)2b2)+(3b)3
Step 2.4
Rewrite using the commutative property of multiplication.
a3-9a2b+3(-3)2ab2+(-3b)3a39a2b+3(3)2ab2+(3b)3
Step 2.5
Raise -33 to the power of 22.
a3-9a2b+39ab2+(-3b)3a39a2b+39ab2+(3b)3
Step 2.6
Multiply 33 by 99.
a3-9a2b+27ab2+(-3b)3a39a2b+27ab2+(3b)3
Step 2.7
Apply the product rule to -3b3b.
a3-9a2b+27ab2+(-3)3b3a39a2b+27ab2+(3)3b3
Step 2.8
Raise -33 to the power of 33.
a3-9a2b+27ab2-27b3a39a2b+27ab227b3
a3-9a2b+27ab2-27b3a39a2b+27ab227b3
 [x2  12  π  xdx ]  x2  12  π  xdx