Enter a problem...
Basic Math Examples
(a-3b)3(a−3b)3
Step 1
Use the Binomial Theorem.
a3+3a2(-3b)+3a(-3b)2+(-3b)3a3+3a2(−3b)+3a(−3b)2+(−3b)3
Step 2
Step 2.1
Rewrite using the commutative property of multiplication.
a3+3⋅-3a2b+3a(-3b)2+(-3b)3a3+3⋅−3a2b+3a(−3b)2+(−3b)3
Step 2.2
Multiply 33 by -3−3.
a3-9a2b+3a(-3b)2+(-3b)3a3−9a2b+3a(−3b)2+(−3b)3
Step 2.3
Apply the product rule to -3b−3b.
a3-9a2b+3a((-3)2b2)+(-3b)3a3−9a2b+3a((−3)2b2)+(−3b)3
Step 2.4
Rewrite using the commutative property of multiplication.
a3-9a2b+3⋅(-3)2ab2+(-3b)3a3−9a2b+3⋅(−3)2ab2+(−3b)3
Step 2.5
Raise -3−3 to the power of 22.
a3-9a2b+3⋅9ab2+(-3b)3a3−9a2b+3⋅9ab2+(−3b)3
Step 2.6
Multiply 33 by 99.
a3-9a2b+27ab2+(-3b)3a3−9a2b+27ab2+(−3b)3
Step 2.7
Apply the product rule to -3b−3b.
a3-9a2b+27ab2+(-3)3b3a3−9a2b+27ab2+(−3)3b3
Step 2.8
Raise -3−3 to the power of 33.
a3-9a2b+27ab2-27b3a3−9a2b+27ab2−27b3
a3-9a2b+27ab2-27b3a3−9a2b+27ab2−27b3