Enter a problem...
Basic Math Examples
(2m-n)2(2m−n)2
Step 1
Rewrite (2m-n)2 as (2m-n)(2m-n).
(2m-n)(2m-n)
Step 2
Step 2.1
Apply the distributive property.
2m(2m-n)-n(2m-n)
Step 2.2
Apply the distributive property.
2m(2m)+2m(-n)-n(2m-n)
Step 2.3
Apply the distributive property.
2m(2m)+2m(-n)-n(2m)-n(-n)
2m(2m)+2m(-n)-n(2m)-n(-n)
Step 3
Step 3.1
Simplify each term.
Step 3.1.1
Rewrite using the commutative property of multiplication.
2⋅2m⋅m+2m(-n)-n(2m)-n(-n)
Step 3.1.2
Multiply m by m by adding the exponents.
Step 3.1.2.1
Move m.
2⋅2(m⋅m)+2m(-n)-n(2m)-n(-n)
Step 3.1.2.2
Multiply m by m.
2⋅2m2+2m(-n)-n(2m)-n(-n)
2⋅2m2+2m(-n)-n(2m)-n(-n)
Step 3.1.3
Multiply 2 by 2.
4m2+2m(-n)-n(2m)-n(-n)
Step 3.1.4
Rewrite using the commutative property of multiplication.
4m2+2⋅-1mn-n(2m)-n(-n)
Step 3.1.5
Multiply 2 by -1.
4m2-2mn-n(2m)-n(-n)
Step 3.1.6
Rewrite using the commutative property of multiplication.
4m2-2mn-1⋅2nm-n(-n)
Step 3.1.7
Multiply -1 by 2.
4m2-2mn-2nm-n(-n)
Step 3.1.8
Rewrite using the commutative property of multiplication.
4m2-2mn-2nm-1⋅-1n⋅n
Step 3.1.9
Multiply n by n by adding the exponents.
Step 3.1.9.1
Move n.
4m2-2mn-2nm-1⋅-1(n⋅n)
Step 3.1.9.2
Multiply n by n.
4m2-2mn-2nm-1⋅-1n2
4m2-2mn-2nm-1⋅-1n2
Step 3.1.10
Multiply -1 by -1.
4m2-2mn-2nm+1n2
Step 3.1.11
Multiply n2 by 1.
4m2-2mn-2nm+n2
4m2-2mn-2nm+n2
Step 3.2
Subtract 2nm from -2mn.
Step 3.2.1
Move n.
4m2-2mn-2mn+n2
Step 3.2.2
Subtract 2mn from -2mn.
4m2-4mn+n2
4m2-4mn+n2
4m2-4mn+n2