Basic Math Examples

Multiply (2 1/2)(3 1/3)
(212)(313)(212)(313)
Step 1
Convert 212212 to an improper fraction.
Tap for more steps...
Step 1.1
A mixed number is an addition of its whole and fractional parts.
(2+12)(313)(2+12)(313)
Step 1.2
Add 22 and 1212.
Tap for more steps...
Step 1.2.1
To write 22 as a fraction with a common denominator, multiply by 2222.
(222+12)(313)(222+12)(313)
Step 1.2.2
Combine 22 and 2222.
(222+12)(313)(222+12)(313)
Step 1.2.3
Combine the numerators over the common denominator.
22+12(313)22+12(313)
Step 1.2.4
Simplify the numerator.
Tap for more steps...
Step 1.2.4.1
Multiply 22 by 22.
4+12(313)4+12(313)
Step 1.2.4.2
Add 44 and 11.
52(313)52(313)
52(313)52(313)
52(313)52(313)
52(313)52(313)
Step 2
Convert 313313 to an improper fraction.
Tap for more steps...
Step 2.1
A mixed number is an addition of its whole and fractional parts.
52(3+13)52(3+13)
Step 2.2
Add 33 and 1313.
Tap for more steps...
Step 2.2.1
To write 33 as a fraction with a common denominator, multiply by 3333.
52(333+13)52(333+13)
Step 2.2.2
Combine 33 and 3333.
52(333+13)52(333+13)
Step 2.2.3
Combine the numerators over the common denominator.
5233+135233+13
Step 2.2.4
Simplify the numerator.
Tap for more steps...
Step 2.2.4.1
Multiply 33 by 33.
529+13529+13
Step 2.2.4.2
Add 99 and 11.
5210352103
5210352103
5210352103
5210352103
Step 3
Cancel the common factor of 22.
Tap for more steps...
Step 3.1
Factor 22 out of 1010.
522(5)3
Step 3.2
Cancel the common factor.
52253
Step 3.3
Rewrite the expression.
5(53)
5(53)
Step 4
Combine 5 and 53.
553
Step 5
Multiply 5 by 5.
253
Step 6
The result can be shown in multiple forms.
Exact Form:
253
Decimal Form:
8.3
Mixed Number Form:
813
 [x2  12  π  xdx ]