Basic Math Examples

Multiply (j^2-2j)((-j+5)/2)
Step 1
Simplify terms.
Tap for more steps...
Step 1.1
Apply the distributive property.
Step 1.2
Combine and .
Step 1.3
Cancel the common factor of .
Tap for more steps...
Step 1.3.1
Factor out of .
Step 1.3.2
Cancel the common factor.
Step 1.3.3
Rewrite the expression.
Step 2
Simplify each term.
Tap for more steps...
Step 2.1
Apply the distributive property.
Step 2.2
Rewrite using the commutative property of multiplication.
Step 2.3
Multiply by .
Step 2.4
Simplify each term.
Tap for more steps...
Step 2.4.1
Multiply by by adding the exponents.
Tap for more steps...
Step 2.4.1.1
Move .
Step 2.4.1.2
Multiply by .
Step 2.4.2
Multiply by .
Step 2.4.3
Multiply by .
Step 3
To write as a fraction with a common denominator, multiply by .
Step 4
Simplify terms.
Tap for more steps...
Step 4.1
Combine and .
Step 4.2
Combine the numerators over the common denominator.
Step 5
Simplify the numerator.
Tap for more steps...
Step 5.1
Factor out of .
Tap for more steps...
Step 5.1.1
Factor out of .
Step 5.1.2
Factor out of .
Step 5.2
Add and .
Step 6
To write as a fraction with a common denominator, multiply by .
Step 7
Simplify terms.
Tap for more steps...
Step 7.1
Combine and .
Step 7.2
Combine the numerators over the common denominator.
Step 8
Simplify the numerator.
Tap for more steps...
Step 8.1
Factor out of .
Tap for more steps...
Step 8.1.1
Factor out of .
Step 8.1.2
Factor out of .
Step 8.1.3
Factor out of .
Step 8.2
Apply the distributive property.
Step 8.3
Rewrite using the commutative property of multiplication.
Step 8.4
Move to the left of .
Step 8.5
Multiply by by adding the exponents.
Tap for more steps...
Step 8.5.1
Move .
Step 8.5.2
Multiply by .
Step 8.6
Multiply by .
Step 8.7
Factor by grouping.
Tap for more steps...
Step 8.7.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Tap for more steps...
Step 8.7.1.1
Factor out of .
Step 8.7.1.2
Rewrite as plus
Step 8.7.1.3
Apply the distributive property.
Step 8.7.2
Factor out the greatest common factor from each group.
Tap for more steps...
Step 8.7.2.1
Group the first two terms and the last two terms.
Step 8.7.2.2
Factor out the greatest common factor (GCF) from each group.
Step 8.7.3
Factor the polynomial by factoring out the greatest common factor, .
Step 9
Simplify with factoring out.
Tap for more steps...
Step 9.1
Factor out of .
Step 9.2
Rewrite as .
Step 9.3
Factor out of .
Step 9.4
Simplify the expression.
Tap for more steps...
Step 9.4.1
Rewrite as .
Step 9.4.2
Move the negative in front of the fraction.
Step 9.4.3
Reorder factors in .