Enter a problem...
Basic Math Examples
(5√√6-√5)(5√√6+√5)
Step 1
Rewrite 5√√6 as 10√6.
5√√6-√5(10√6+√5)
Step 2
Apply the distributive property.
5√√6-√510√6+5√√6-√5√5
Step 3
Step 3.1
Rewrite the expression using the least common index of 10.
Step 3.1.1
Use n√ax=axn to rewrite 5√√6-√5 as (√6-√5)15.
(√6-√5)1510√6+5√√6-√5√5
Step 3.1.2
Rewrite (√6-√5)15 as (√6-√5)210.
(√6-√5)21010√6+5√√6-√5√5
Step 3.1.3
Rewrite (√6-√5)210 as 10√(√6-√5)2.
10√(√6-√5)210√6+5√√6-√5√5
10√(√6-√5)210√6+5√√6-√5√5
Step 3.2
Combine using the product rule for radicals.
10√(√6-√5)2⋅6+5√√6-√5√5
10√(√6-√5)2⋅6+5√√6-√5√5
Step 4
Step 4.1
Rewrite the expression using the least common index of 10.
Step 4.1.1
Use n√ax=axn to rewrite 5√√6-√5 as (√6-√5)15.
10√(√6-√5)2⋅6+(√6-√5)15√5
Step 4.1.2
Rewrite (√6-√5)15 as (√6-√5)210.
10√(√6-√5)2⋅6+(√6-√5)210√5
Step 4.1.3
Rewrite (√6-√5)210 as 10√(√6-√5)2.
10√(√6-√5)2⋅6+10√(√6-√5)2√5
Step 4.1.4
Use n√ax=axn to rewrite √5 as 512.
10√(√6-√5)2⋅6+10√(√6-√5)2⋅512
Step 4.1.5
Rewrite 512 as 5510.
10√(√6-√5)2⋅6+10√(√6-√5)2⋅5510
Step 4.1.6
Rewrite 5510 as 10√55.
10√(√6-√5)2⋅6+10√(√6-√5)210√55
10√(√6-√5)2⋅6+10√(√6-√5)210√55
Step 4.2
Combine using the product rule for radicals.
10√(√6-√5)2⋅6+10√(√6-√5)2⋅55
Step 4.3
Raise 5 to the power of 5.
10√(√6-√5)2⋅6+10√(√6-√5)2⋅3125
10√(√6-√5)2⋅6+10√(√6-√5)2⋅3125
Step 5
The result can be shown in multiple forms.
Exact Form:
10√(√6-√5)2⋅6+10√(√6-√5)2⋅3125
Decimal Form:
2.52018764…