Enter a problem...
Basic Math Examples
(√85-√65)(√85+√65)(√85−√65)(√85+√65)
Step 1
Step 1.1
Apply the distributive property.
√85(√85+√65)-√65(√85+√65)√85(√85+√65)−√65(√85+√65)
Step 1.2
Apply the distributive property.
√85√85+√85√65-√65(√85+√65)√85√85+√85√65−√65(√85+√65)
Step 1.3
Apply the distributive property.
√85√85+√85√65-√65√85-√65√65√85√85+√85√65−√65√85−√65√65
√85√85+√85√65-√65√85-√65√65√85√85+√85√65−√65√85−√65√65
Step 2
Step 2.1
Simplify each term.
Step 2.1.1
Combine using the product rule for radicals.
√85⋅85+√85√65-√65√85-√65√65√85⋅85+√85√65−√65√85−√65√65
Step 2.1.2
Multiply 8585 by 8585.
√7225+√85√65-√65√85-√65√65√7225+√85√65−√65√85−√65√65
Step 2.1.3
Rewrite 72257225 as 852852.
√852+√85√65-√65√85-√65√65√852+√85√65−√65√85−√65√65
Step 2.1.4
Pull terms out from under the radical, assuming positive real numbers.
85+√85√65-√65√85-√65√6585+√85√65−√65√85−√65√65
Step 2.1.5
Combine using the product rule for radicals.
85+√85⋅65-√65√85-√65√6585+√85⋅65−√65√85−√65√65
Step 2.1.6
Multiply 8585 by 6565.
85+√5525-√65√85-√65√6585+√5525−√65√85−√65√65
Step 2.1.7
Rewrite 55255525 as 52⋅22152⋅221.
Step 2.1.7.1
Factor 2525 out of 55255525.
85+√25(221)-√65√85-√65√6585+√25(221)−√65√85−√65√65
Step 2.1.7.2
Rewrite 2525 as 5252.
85+√52⋅221-√65√85-√65√6585+√52⋅221−√65√85−√65√65
85+√52⋅221-√65√85-√65√6585+√52⋅221−√65√85−√65√65
Step 2.1.8
Pull terms out from under the radical.
85+5√221-√65√85-√65√6585+5√221−√65√85−√65√65
Step 2.1.9
Multiply -√65√85−√65√85.
Step 2.1.9.1
Combine using the product rule for radicals.
85+5√221-√85⋅65-√65√6585+5√221−√85⋅65−√65√65
Step 2.1.9.2
Multiply 8585 by 6565.
85+5√221-√5525-√65√6585+5√221−√5525−√65√65
85+5√221-√5525-√65√6585+5√221−√5525−√65√65
Step 2.1.10
Rewrite 55255525 as 52⋅22152⋅221.
Step 2.1.10.1
Factor 2525 out of 55255525.
85+5√221-√25(221)-√65√6585+5√221−√25(221)−√65√65
Step 2.1.10.2
Rewrite 2525 as 5252.
85+5√221-√52⋅221-√65√6585+5√221−√52⋅221−√65√65
85+5√221-√52⋅221-√65√6585+5√221−√52⋅221−√65√65
Step 2.1.11
Pull terms out from under the radical.
85+5√221-(5√221)-√65√6585+5√221−(5√221)−√65√65
Step 2.1.12
Multiply 55 by -1−1.
85+5√221-5√221-√65√6585+5√221−5√221−√65√65
Step 2.1.13
Multiply -√65√65−√65√65.
Step 2.1.13.1
Raise √65 to the power of 1.
85+5√221-5√221-(√651√65)
Step 2.1.13.2
Raise √65 to the power of 1.
85+5√221-5√221-(√651√651)
Step 2.1.13.3
Use the power rule aman=am+n to combine exponents.
85+5√221-5√221-√651+1
Step 2.1.13.4
Add 1 and 1.
85+5√221-5√221-√652
85+5√221-5√221-√652
Step 2.1.14
Rewrite √652 as 65.
Step 2.1.14.1
Use n√ax=axn to rewrite √65 as 6512.
85+5√221-5√221-(6512)2
Step 2.1.14.2
Apply the power rule and multiply exponents, (am)n=amn.
85+5√221-5√221-6512⋅2
Step 2.1.14.3
Combine 12 and 2.
85+5√221-5√221-6522
Step 2.1.14.4
Cancel the common factor of 2.
Step 2.1.14.4.1
Cancel the common factor.
85+5√221-5√221-6522
Step 2.1.14.4.2
Rewrite the expression.
85+5√221-5√221-651
85+5√221-5√221-651
Step 2.1.14.5
Evaluate the exponent.
85+5√221-5√221-1⋅65
85+5√221-5√221-1⋅65
Step 2.1.15
Multiply -1 by 65.
85+5√221-5√221-65
85+5√221-5√221-65
Step 2.2
Subtract 65 from 85.
20+5√221-5√221
Step 2.3
Subtract 5√221 from 5√221.
20+0
Step 2.4
Add 20 and 0.
20
20