Enter a problem...
Basic Math Examples
z=4√z-4z=4√z−4
Step 1
Since the radical is on the right side of the equation, switch the sides so it is on the left side of the equation.
4√z-4=z4√z−4=z
Step 2
To remove the radical on the left side of the equation, square both sides of the equation.
(4√z-4)2=z2(4√z−4)2=z2
Step 3
Step 3.1
Use n√ax=axnn√ax=axn to rewrite √z-4√z−4 as (z-4)12(z−4)12.
(4(z-4)12)2=z2(4(z−4)12)2=z2
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify (4(z-4)12)2(4(z−4)12)2.
Step 3.2.1.1
Apply the product rule to 4(z-4)124(z−4)12.
42((z-4)12)2=z242((z−4)12)2=z2
Step 3.2.1.2
Raise 44 to the power of 22.
16((z-4)12)2=z216((z−4)12)2=z2
Step 3.2.1.3
Multiply the exponents in ((z-4)12)2((z−4)12)2.
Step 3.2.1.3.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
16(z-4)12⋅2=z216(z−4)12⋅2=z2
Step 3.2.1.3.2
Cancel the common factor of 22.
Step 3.2.1.3.2.1
Cancel the common factor.
16(z-4)12⋅2=z2
Step 3.2.1.3.2.2
Rewrite the expression.
16(z-4)1=z2
16(z-4)1=z2
16(z-4)1=z2
Step 3.2.1.4
Simplify.
16(z-4)=z2
Step 3.2.1.5
Apply the distributive property.
16z+16⋅-4=z2
Step 3.2.1.6
Multiply 16 by -4.
16z-64=z2
16z-64=z2
16z-64=z2
16z-64=z2
Step 4
Step 4.1
Subtract z2 from both sides of the equation.
16z-64-z2=0
Step 4.2
Factor the left side of the equation.
Step 4.2.1
Factor -1 out of 16z-64-z2.
Step 4.2.1.1
Reorder the expression.
Step 4.2.1.1.1
Move -64.
16z-z2-64=0
Step 4.2.1.1.2
Reorder 16z and -z2.
-z2+16z-64=0
-z2+16z-64=0
Step 4.2.1.2
Factor -1 out of -z2.
-(z2)+16z-64=0
Step 4.2.1.3
Factor -1 out of 16z.
-(z2)-(-16z)-64=0
Step 4.2.1.4
Rewrite -64 as -1(64).
-(z2)-(-16z)-1⋅64=0
Step 4.2.1.5
Factor -1 out of -(z2)-(-16z).
-(z2-16z)-1⋅64=0
Step 4.2.1.6
Factor -1 out of -(z2-16z)-1(64).
-(z2-16z+64)=0
-(z2-16z+64)=0
Step 4.2.2
Factor using the perfect square rule.
Step 4.2.2.1
Rewrite 64 as 82.
-(z2-16z+82)=0
Step 4.2.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
16z=2⋅z⋅8
Step 4.2.2.3
Rewrite the polynomial.
-(z2-2⋅z⋅8+82)=0
Step 4.2.2.4
Factor using the perfect square trinomial rule a2-2ab+b2=(a-b)2, where a=z and b=8.
-(z-8)2=0
-(z-8)2=0
-(z-8)2=0
Step 4.3
Divide each term in -(z-8)2=0 by -1 and simplify.
Step 4.3.1
Divide each term in -(z-8)2=0 by -1.
-(z-8)2-1=0-1
Step 4.3.2
Simplify the left side.
Step 4.3.2.1
Dividing two negative values results in a positive value.
(z-8)21=0-1
Step 4.3.2.2
Divide (z-8)2 by 1.
(z-8)2=0-1
(z-8)2=0-1
Step 4.3.3
Simplify the right side.
Step 4.3.3.1
Divide 0 by -1.
(z-8)2=0
(z-8)2=0
(z-8)2=0
Step 4.4
Set the z-8 equal to 0.
z-8=0
Step 4.5
Add 8 to both sides of the equation.
z=8
z=8