Basic Math Examples

Solve for z z=4 square root of z-4
z=4z-4z=4z4
Step 1
Since the radical is on the right side of the equation, switch the sides so it is on the left side of the equation.
4z-4=z4z4=z
Step 2
To remove the radical on the left side of the equation, square both sides of the equation.
(4z-4)2=z2(4z4)2=z2
Step 3
Simplify each side of the equation.
Tap for more steps...
Step 3.1
Use nax=axnnax=axn to rewrite z-4z4 as (z-4)12(z4)12.
(4(z-4)12)2=z2(4(z4)12)2=z2
Step 3.2
Simplify the left side.
Tap for more steps...
Step 3.2.1
Simplify (4(z-4)12)2(4(z4)12)2.
Tap for more steps...
Step 3.2.1.1
Apply the product rule to 4(z-4)124(z4)12.
42((z-4)12)2=z242((z4)12)2=z2
Step 3.2.1.2
Raise 44 to the power of 22.
16((z-4)12)2=z216((z4)12)2=z2
Step 3.2.1.3
Multiply the exponents in ((z-4)12)2((z4)12)2.
Tap for more steps...
Step 3.2.1.3.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
16(z-4)122=z216(z4)122=z2
Step 3.2.1.3.2
Cancel the common factor of 22.
Tap for more steps...
Step 3.2.1.3.2.1
Cancel the common factor.
16(z-4)122=z2
Step 3.2.1.3.2.2
Rewrite the expression.
16(z-4)1=z2
16(z-4)1=z2
16(z-4)1=z2
Step 3.2.1.4
Simplify.
16(z-4)=z2
Step 3.2.1.5
Apply the distributive property.
16z+16-4=z2
Step 3.2.1.6
Multiply 16 by -4.
16z-64=z2
16z-64=z2
16z-64=z2
16z-64=z2
Step 4
Solve for z.
Tap for more steps...
Step 4.1
Subtract z2 from both sides of the equation.
16z-64-z2=0
Step 4.2
Factor the left side of the equation.
Tap for more steps...
Step 4.2.1
Factor -1 out of 16z-64-z2.
Tap for more steps...
Step 4.2.1.1
Reorder the expression.
Tap for more steps...
Step 4.2.1.1.1
Move -64.
16z-z2-64=0
Step 4.2.1.1.2
Reorder 16z and -z2.
-z2+16z-64=0
-z2+16z-64=0
Step 4.2.1.2
Factor -1 out of -z2.
-(z2)+16z-64=0
Step 4.2.1.3
Factor -1 out of 16z.
-(z2)-(-16z)-64=0
Step 4.2.1.4
Rewrite -64 as -1(64).
-(z2)-(-16z)-164=0
Step 4.2.1.5
Factor -1 out of -(z2)-(-16z).
-(z2-16z)-164=0
Step 4.2.1.6
Factor -1 out of -(z2-16z)-1(64).
-(z2-16z+64)=0
-(z2-16z+64)=0
Step 4.2.2
Factor using the perfect square rule.
Tap for more steps...
Step 4.2.2.1
Rewrite 64 as 82.
-(z2-16z+82)=0
Step 4.2.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
16z=2z8
Step 4.2.2.3
Rewrite the polynomial.
-(z2-2z8+82)=0
Step 4.2.2.4
Factor using the perfect square trinomial rule a2-2ab+b2=(a-b)2, where a=z and b=8.
-(z-8)2=0
-(z-8)2=0
-(z-8)2=0
Step 4.3
Divide each term in -(z-8)2=0 by -1 and simplify.
Tap for more steps...
Step 4.3.1
Divide each term in -(z-8)2=0 by -1.
-(z-8)2-1=0-1
Step 4.3.2
Simplify the left side.
Tap for more steps...
Step 4.3.2.1
Dividing two negative values results in a positive value.
(z-8)21=0-1
Step 4.3.2.2
Divide (z-8)2 by 1.
(z-8)2=0-1
(z-8)2=0-1
Step 4.3.3
Simplify the right side.
Tap for more steps...
Step 4.3.3.1
Divide 0 by -1.
(z-8)2=0
(z-8)2=0
(z-8)2=0
Step 4.4
Set the z-8 equal to 0.
z-8=0
Step 4.5
Add 8 to both sides of the equation.
z=8
z=8
 [x2  12  π  xdx ]