Enter a problem...
Basic Math Examples
2k(k+5)=5
Step 1
Step 1.1
Divide each term in 2k(k+5)=5 by 2.
2k(k+5)2=52
Step 1.2
Simplify the left side.
Step 1.2.1
Cancel the common factor of 2.
Step 1.2.1.1
Cancel the common factor.
2k(k+5)2=52
Step 1.2.1.2
Divide k(k+5) by 1.
k(k+5)=52
k(k+5)=52
Step 1.2.2
Apply the distributive property.
k⋅k+k⋅5=52
Step 1.2.3
Simplify the expression.
Step 1.2.3.1
Multiply k by k.
k2+k⋅5=52
Step 1.2.3.2
Move 5 to the left of k.
k2+5k=52
k2+5k=52
k2+5k=52
k2+5k=52
Step 2
Subtract 52 from both sides of the equation.
k2+5k-52=0
Step 3
Step 3.1
Apply the distributive property.
2k2+2(5k)+2(-52)=0
Step 3.2
Simplify.
Step 3.2.1
Multiply 5 by 2.
2k2+10k+2(-52)=0
Step 3.2.2
Cancel the common factor of 2.
Step 3.2.2.1
Move the leading negative in -52 into the numerator.
2k2+10k+2(-52)=0
Step 3.2.2.2
Cancel the common factor.
2k2+10k+2(-52)=0
Step 3.2.2.3
Rewrite the expression.
2k2+10k-5=0
2k2+10k-5=0
2k2+10k-5=0
2k2+10k-5=0
Step 4
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 5
Substitute the values a=2, b=10, and c=-5 into the quadratic formula and solve for k.
-10±√102-4⋅(2⋅-5)2⋅2
Step 6
Step 6.1
Simplify the numerator.
Step 6.1.1
Raise 10 to the power of 2.
k=-10±√100-4⋅2⋅-52⋅2
Step 6.1.2
Multiply -4⋅2⋅-5.
Step 6.1.2.1
Multiply -4 by 2.
k=-10±√100-8⋅-52⋅2
Step 6.1.2.2
Multiply -8 by -5.
k=-10±√100+402⋅2
k=-10±√100+402⋅2
Step 6.1.3
Add 100 and 40.
k=-10±√1402⋅2
Step 6.1.4
Rewrite 140 as 22⋅35.
Step 6.1.4.1
Factor 4 out of 140.
k=-10±√4(35)2⋅2
Step 6.1.4.2
Rewrite 4 as 22.
k=-10±√22⋅352⋅2
k=-10±√22⋅352⋅2
Step 6.1.5
Pull terms out from under the radical.
k=-10±2√352⋅2
k=-10±2√352⋅2
Step 6.2
Multiply 2 by 2.
k=-10±2√354
Step 6.3
Simplify -10±2√354.
k=-5±√352
k=-5±√352
Step 7
The final answer is the combination of both solutions.
k=-5-√352,-5+√352
Step 8
The result can be shown in multiple forms.
Exact Form:
k=-5-√352,-5+√352
Decimal Form:
k=0.45803989…,-5.45803989…