Basic Math Examples

Solve for k 2k(k+5)=5
2k(k+5)=5
Step 1
Divide each term in 2k(k+5)=5 by 2 and simplify.
Tap for more steps...
Step 1.1
Divide each term in 2k(k+5)=5 by 2.
2k(k+5)2=52
Step 1.2
Simplify the left side.
Tap for more steps...
Step 1.2.1
Cancel the common factor of 2.
Tap for more steps...
Step 1.2.1.1
Cancel the common factor.
2k(k+5)2=52
Step 1.2.1.2
Divide k(k+5) by 1.
k(k+5)=52
k(k+5)=52
Step 1.2.2
Apply the distributive property.
kk+k5=52
Step 1.2.3
Simplify the expression.
Tap for more steps...
Step 1.2.3.1
Multiply k by k.
k2+k5=52
Step 1.2.3.2
Move 5 to the left of k.
k2+5k=52
k2+5k=52
k2+5k=52
k2+5k=52
Step 2
Subtract 52 from both sides of the equation.
k2+5k-52=0
Step 3
Multiply through by the least common denominator 2, then simplify.
Tap for more steps...
Step 3.1
Apply the distributive property.
2k2+2(5k)+2(-52)=0
Step 3.2
Simplify.
Tap for more steps...
Step 3.2.1
Multiply 5 by 2.
2k2+10k+2(-52)=0
Step 3.2.2
Cancel the common factor of 2.
Tap for more steps...
Step 3.2.2.1
Move the leading negative in -52 into the numerator.
2k2+10k+2(-52)=0
Step 3.2.2.2
Cancel the common factor.
2k2+10k+2(-52)=0
Step 3.2.2.3
Rewrite the expression.
2k2+10k-5=0
2k2+10k-5=0
2k2+10k-5=0
2k2+10k-5=0
Step 4
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 5
Substitute the values a=2, b=10, and c=-5 into the quadratic formula and solve for k.
-10±102-4(2-5)22
Step 6
Simplify.
Tap for more steps...
Step 6.1
Simplify the numerator.
Tap for more steps...
Step 6.1.1
Raise 10 to the power of 2.
k=-10±100-42-522
Step 6.1.2
Multiply -42-5.
Tap for more steps...
Step 6.1.2.1
Multiply -4 by 2.
k=-10±100-8-522
Step 6.1.2.2
Multiply -8 by -5.
k=-10±100+4022
k=-10±100+4022
Step 6.1.3
Add 100 and 40.
k=-10±14022
Step 6.1.4
Rewrite 140 as 2235.
Tap for more steps...
Step 6.1.4.1
Factor 4 out of 140.
k=-10±4(35)22
Step 6.1.4.2
Rewrite 4 as 22.
k=-10±223522
k=-10±223522
Step 6.1.5
Pull terms out from under the radical.
k=-10±23522
k=-10±23522
Step 6.2
Multiply 2 by 2.
k=-10±2354
Step 6.3
Simplify -10±2354.
k=-5±352
k=-5±352
Step 7
The final answer is the combination of both solutions.
k=-5-352,-5+352
Step 8
The result can be shown in multiple forms.
Exact Form:
k=-5-352,-5+352
Decimal Form:
k=0.45803989,-5.45803989
 [x2  12  π  xdx ]