Enter a problem...
Basic Math Examples
k2=450k2=450
Step 1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
k=±√450k=±√450
Step 2
Step 2.1
Rewrite 450450 as 152⋅2152⋅2.
Step 2.1.1
Factor 225225 out of 450450.
k=±√225(2)k=±√225(2)
Step 2.1.2
Rewrite 225225 as 152152.
k=±√152⋅2k=±√152⋅2
k=±√152⋅2k=±√152⋅2
Step 2.2
Pull terms out from under the radical.
k=±15√2k=±15√2
k=±15√2k=±15√2
Step 3
Step 3.1
First, use the positive value of the ±± to find the first solution.
k=15√2k=15√2
Step 3.2
Next, use the negative value of the ±± to find the second solution.
k=-15√2k=−15√2
Step 3.3
The complete solution is the result of both the positive and negative portions of the solution.
k=15√2,-15√2k=15√2,−15√2
k=15√2,-15√2k=15√2,−15√2
Step 4
The result can be shown in multiple forms.
Exact Form:
k=15√2,-15√2k=15√2,−15√2
Decimal Form:
k=21.21320343…,-21.21320343…k=21.21320343…,−21.21320343…