Basic Math Examples

Solve for k k^2=450
k2=450k2=450
Step 1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
k=±450k=±450
Step 2
Simplify ±450±450.
Tap for more steps...
Step 2.1
Rewrite 450450 as 15221522.
Tap for more steps...
Step 2.1.1
Factor 225225 out of 450450.
k=±225(2)k=±225(2)
Step 2.1.2
Rewrite 225225 as 152152.
k=±1522k=±1522
k=±1522k=±1522
Step 2.2
Pull terms out from under the radical.
k=±152k=±152
k=±152k=±152
Step 3
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 3.1
First, use the positive value of the ±± to find the first solution.
k=152k=152
Step 3.2
Next, use the negative value of the ±± to find the second solution.
k=-152k=152
Step 3.3
The complete solution is the result of both the positive and negative portions of the solution.
k=152,-152k=152,152
k=152,-152k=152,152
Step 4
The result can be shown in multiple forms.
Exact Form:
k=152,-152k=152,152
Decimal Form:
k=21.21320343,-21.21320343k=21.21320343,21.21320343
 [x2  12  π  xdx ]  x2  12  π  xdx