Enter a problem...
Basic Math Examples
1002+(htan(22))2=(htan(19))21002+(htan(22))2=(htan(19))2
Step 1
Subtract (htan(19))2(htan(19))2 from both sides of the equation.
1002+(htan(22))2-(htan(19))2=01002+(htan(22))2−(htan(19))2=0
Step 2
Step 2.1
Simplify each term.
Step 2.1.1
Raise 100100 to the power of 22.
10000+(htan(22))2-(htan(19))2=010000+(htan(22))2−(htan(19))2=0
Step 2.1.2
Separate fractions.
10000+(h1⋅1tan(22))2-(htan(19))2=010000+(h1⋅1tan(22))2−(htan(19))2=0
Step 2.1.3
Rewrite tan(22)tan(22) in terms of sines and cosines.
10000+(h1⋅1sin(22)cos(22))2-(htan(19))2=010000+⎛⎜⎝h1⋅1sin(22)cos(22)⎞⎟⎠2−(htan(19))2=0
Step 2.1.4
Multiply by the reciprocal of the fraction to divide by sin(22)cos(22)sin(22)cos(22).
10000+(h1⋅cos(22)sin(22))2-(htan(19))2=010000+(h1⋅cos(22)sin(22))2−(htan(19))2=0
Step 2.1.5
Convert from cos(22)sin(22)cos(22)sin(22) to cot(22)cot(22).
10000+(h1⋅cot(22))2-(htan(19))2=010000+(h1⋅cot(22))2−(htan(19))2=0
Step 2.1.6
Divide hh by 11.
10000+(hcot(22))2-(htan(19))2=010000+(hcot(22))2−(htan(19))2=0
Step 2.1.7
Evaluate cot(22)cot(22).
10000+(h⋅2.47508685)2-(htan(19))2=010000+(h⋅2.47508685)2−(htan(19))2=0
Step 2.1.8
Move 2.475086852.47508685 to the left of hh.
10000+(2.47508685⋅h)2-(htan(19))2=010000+(2.47508685⋅h)2−(htan(19))2=0
Step 2.1.9
Apply the product rule to 2.47508685h2.47508685h.
10000+2.475086852h2-(htan(19))2=010000+2.475086852h2−(htan(19))2=0
Step 2.1.10
Raise 2.475086852.47508685 to the power of 22.
10000+6.12605493h2-(htan(19))2=010000+6.12605493h2−(htan(19))2=0
Step 2.1.11
Separate fractions.
10000+6.12605493h2-(h1⋅1tan(19))2=010000+6.12605493h2−(h1⋅1tan(19))2=0
Step 2.1.12
Rewrite tan(19)tan(19) in terms of sines and cosines.
10000+6.12605493h2-(h1⋅1sin(19)cos(19))2=010000+6.12605493h2−⎛⎜⎝h1⋅1sin(19)cos(19)⎞⎟⎠2=0
Step 2.1.13
Multiply by the reciprocal of the fraction to divide by sin(19)cos(19)sin(19)cos(19).
10000+6.12605493h2-(h1⋅cos(19)sin(19))2=010000+6.12605493h2−(h1⋅cos(19)sin(19))2=0
Step 2.1.14
Convert from cos(19)sin(19)cos(19)sin(19) to cot(19)cot(19).
10000+6.12605493h2-(h1⋅cot(19))2=010000+6.12605493h2−(h1⋅cot(19))2=0
Step 2.1.15
Divide hh by 11.
10000+6.12605493h2-(hcot(19))2=010000+6.12605493h2−(hcot(19))2=0
Step 2.1.16
Evaluate cot(19)cot(19).
10000+6.12605493h2-(h⋅2.90421087)2=010000+6.12605493h2−(h⋅2.90421087)2=0
Step 2.1.17
Move 2.904210872.90421087 to the left of hh.
10000+6.12605493h2-(2.90421087⋅h)2=010000+6.12605493h2−(2.90421087⋅h)2=0
Step 2.1.18
Apply the product rule to 2.90421087h2.90421087h.
10000+6.12605493h2-(2.904210872h2)=010000+6.12605493h2−(2.904210872h2)=0
Step 2.1.19
Raise 2.904210872.90421087 to the power of 22.
10000+6.12605493h2-(8.43444082h2)=010000+6.12605493h2−(8.43444082h2)=0
Step 2.1.20
Multiply 8.434440828.43444082 by -1−1.
10000+6.12605493h2-8.43444082h2=010000+6.12605493h2−8.43444082h2=0
10000+6.12605493h2-8.43444082h2=010000+6.12605493h2−8.43444082h2=0
Step 2.2
Subtract 8.43444082h28.43444082h2 from 6.12605493h26.12605493h2.
10000-2.30838589h2=010000−2.30838589h2=0
10000-2.30838589h2=010000−2.30838589h2=0
Step 3
Step 3.1
Rewrite 1000010000 as 10021002.
1002-2.30838589h2=01002−2.30838589h2=0
Step 3.2
Rewrite 2.30838589h22.30838589h2 as (1.51933731h)2(1.51933731h)2.
1002-(1.51933731h)2=01002−(1.51933731h)2=0
Step 3.3
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=100a=100 and b=1.51933731hb=1.51933731h.
(100+1.51933731h)(100-(1.51933731h))=0(100+1.51933731h)(100−(1.51933731h))=0
Step 3.4
Multiply 1.519337311.51933731 by -1−1.
(100+1.51933731h)(100-1.51933731h)=0(100+1.51933731h)(100−1.51933731h)=0
(100+1.51933731h)(100-1.51933731h)=0(100+1.51933731h)(100−1.51933731h)=0
Step 4
If any individual factor on the left side of the equation is equal to 00, the entire expression will be equal to 00.
100+1.51933731h=0100+1.51933731h=0
100-1.51933731h=0100−1.51933731h=0
Step 5
Step 5.1
Set 100+1.51933731h100+1.51933731h equal to 00.
100+1.51933731h=0100+1.51933731h=0
Step 5.2
Solve 100+1.51933731h=0100+1.51933731h=0 for hh.
Step 5.2.1
Subtract 100100 from both sides of the equation.
1.51933731h=-1001.51933731h=−100
Step 5.2.2
Divide each term in 1.51933731h=-1001.51933731h=−100 by 1.519337311.51933731 and simplify.
Step 5.2.2.1
Divide each term in 1.51933731h=-1001.51933731h=−100 by 1.519337311.51933731.
1.51933731h1.51933731=-1001.519337311.51933731h1.51933731=−1001.51933731
Step 5.2.2.2
Simplify the left side.
Step 5.2.2.2.1
Cancel the common factor of 1.519337311.51933731.
Step 5.2.2.2.1.1
Cancel the common factor.
1.51933731h1.51933731=-1001.519337311.51933731h1.51933731=−1001.51933731
Step 5.2.2.2.1.2
Divide h by 1.
h=-1001.51933731
h=-1001.51933731
h=-1001.51933731
Step 5.2.2.3
Simplify the right side.
Step 5.2.2.3.1
Divide -100 by 1.51933731.
h=-65.8181687
h=-65.8181687
h=-65.8181687
h=-65.8181687
h=-65.8181687
Step 6
Step 6.1
Set 100-1.51933731h equal to 0.
100-1.51933731h=0
Step 6.2
Solve 100-1.51933731h=0 for h.
Step 6.2.1
Subtract 100 from both sides of the equation.
-1.51933731h=-100
Step 6.2.2
Divide each term in -1.51933731h=-100 by -1.51933731 and simplify.
Step 6.2.2.1
Divide each term in -1.51933731h=-100 by -1.51933731.
-1.51933731h-1.51933731=-100-1.51933731
Step 6.2.2.2
Simplify the left side.
Step 6.2.2.2.1
Cancel the common factor of -1.51933731.
Step 6.2.2.2.1.1
Cancel the common factor.
-1.51933731h-1.51933731=-100-1.51933731
Step 6.2.2.2.1.2
Divide h by 1.
h=-100-1.51933731
h=-100-1.51933731
h=-100-1.51933731
Step 6.2.2.3
Simplify the right side.
Step 6.2.2.3.1
Divide -100 by -1.51933731.
h=65.8181687
h=65.8181687
h=65.8181687
h=65.8181687
h=65.8181687
Step 7
The final solution is all the values that make (100+1.51933731h)(100-1.51933731h)=0 true.
h=-65.8181687,65.8181687