Enter a problem...
Basic Math Examples
G=(sin(120)cos(225))sec(300)+tan(150)sec(210)csc(120)cot(240)G=(sin(120)cos(225))sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1
Step 1.1
Simplify the numerator.
Step 1.1.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
G=(sin(60)cos(225))sec(300)+tan(150)sec(210)csc(120)cot(240)G=(sin(60)cos(225))sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.1.2
The exact value of sin(60)sin(60) is √32√32.
G=(√32cos(225))sec(300)+tan(150)sec(210)csc(120)cot(240)G=⎛⎜⎝√32cos(225)⎞⎟⎠sec(300)+tan(150)sec(210)csc(120)cot(240)
G=(√32cos(225))sec(300)+tan(150)sec(210)csc(120)cot(240)G=⎛⎜⎝√32cos(225)⎞⎟⎠sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.2
Simplify the denominator.
Step 1.2.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the third quadrant.
G=(√32-cos(45))sec(300)+tan(150)sec(210)csc(120)cot(240)G=⎛⎜⎝√32−cos(45)⎞⎟⎠sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.2.2
The exact value of cos(45)cos(45) is √22√22.
G=(√32-√22)sec(300)+tan(150)sec(210)csc(120)cot(240)G=⎛⎜⎝√32−√22⎞⎟⎠sec(300)+tan(150)sec(210)csc(120)cot(240)
G=(√32-√22)sec(300)+tan(150)sec(210)csc(120)cot(240)G=⎛⎜⎝√32−√22⎞⎟⎠sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.3
Multiply the numerator by the reciprocal of the denominator.
G=(√32(-2√2))sec(300)+tan(150)sec(210)csc(120)cot(240)G=(√32(−2√2))sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.4
Cancel the common factor of 22.
Step 1.4.1
Move the leading negative in -2√2−2√2 into the numerator.
G=(√32⋅-2√2)sec(300)+tan(150)sec(210)csc(120)cot(240)G=(√32⋅−2√2)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.4.2
Factor 22 out of -2−2.
G=(√32⋅2(-1)√2)sec(300)+tan(150)sec(210)csc(120)cot(240)G=(√32⋅2(−1)√2)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.4.3
Cancel the common factor.
G=(√32⋅2⋅-1√2)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.4.4
Rewrite the expression.
G=(√3-1√2)sec(300)+tan(150)sec(210)csc(120)cot(240)
G=(√3-1√2)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.5
Combine √3 and -1√2.
G=(√3⋅-1√2)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.6
Simplify the numerator.
Step 1.6.1
Move -1 to the left of √3.
G=(-1⋅√3√2)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.6.2
Rewrite -1√3 as -√3.
G=(-√3√2)sec(300)+tan(150)sec(210)csc(120)cot(240)
G=(-√3√2)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.7
Move the negative in front of the fraction.
G=(-√3√2)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.8
Multiply √3√2 by √2√2.
G=(-(√3√2⋅√2√2))sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.9
Combine and simplify the denominator.
Step 1.9.1
Multiply √3√2 by √2√2.
G=(-√3√2√2√2)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.9.2
Raise √2 to the power of 1.
G=(-√3√2√21√2)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.9.3
Raise √2 to the power of 1.
G=(-√3√2√21√21)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.9.4
Use the power rule aman=am+n to combine exponents.
G=(-√3√2√21+1)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.9.5
Add 1 and 1.
G=(-√3√2√22)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.9.6
Rewrite √22 as 2.
Step 1.9.6.1
Use n√ax=axn to rewrite √2 as 212.
G=(-√3√2(212)2)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.9.6.2
Apply the power rule and multiply exponents, (am)n=amn.
G=(-√3√2212⋅2)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.9.6.3
Combine 12 and 2.
G=(-√3√2222)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.9.6.4
Cancel the common factor of 2.
Step 1.9.6.4.1
Cancel the common factor.
G=(-√3√2222)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.9.6.4.2
Rewrite the expression.
G=(-√3√221)sec(300)+tan(150)sec(210)csc(120)cot(240)
G=(-√3√221)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.9.6.5
Evaluate the exponent.
G=(-√3√22)sec(300)+tan(150)sec(210)csc(120)cot(240)
G=(-√3√22)sec(300)+tan(150)sec(210)csc(120)cot(240)
G=(-√3√22)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.10
Simplify the numerator.
Step 1.10.1
Combine using the product rule for radicals.
G=(-√3⋅22)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.10.2
Multiply 3 by 2.
G=(-√62)sec(300)+tan(150)sec(210)csc(120)cot(240)
G=(-√62)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.11
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
G=(-√62)sec(60)+tan(150)sec(210)csc(120)cot(240)
Step 1.12
The exact value of sec(60) is 2.
G=(-√62)2+tan(150)sec(210)csc(120)cot(240)
Step 1.13
Use the power rule (ab)n=anbn to distribute the exponent.
Step 1.13.1
Apply the product rule to -√62.
G=(-1)2(√62)2+tan(150)sec(210)csc(120)cot(240)
Step 1.13.2
Apply the product rule to √62.
G=(-1)2√6222+tan(150)sec(210)csc(120)cot(240)
G=(-1)2√6222+tan(150)sec(210)csc(120)cot(240)
Step 1.14
Raise -1 to the power of 2.
G=1√6222+tan(150)sec(210)csc(120)cot(240)
Step 1.15
Multiply √6222 by 1.
G=√6222+tan(150)sec(210)csc(120)cot(240)
Step 1.16
Rewrite √62 as 6.
Step 1.16.1
Use n√ax=axn to rewrite √6 as 612.
G=(612)222+tan(150)sec(210)csc(120)cot(240)
Step 1.16.2
Apply the power rule and multiply exponents, (am)n=amn.
G=612⋅222+tan(150)sec(210)csc(120)cot(240)
Step 1.16.3
Combine 12 and 2.
G=62222+tan(150)sec(210)csc(120)cot(240)
Step 1.16.4
Cancel the common factor of 2.
Step 1.16.4.1
Cancel the common factor.
G=62222+tan(150)sec(210)csc(120)cot(240)
Step 1.16.4.2
Rewrite the expression.
G=6122+tan(150)sec(210)csc(120)cot(240)
G=6122+tan(150)sec(210)csc(120)cot(240)
Step 1.16.5
Evaluate the exponent.
G=622+tan(150)sec(210)csc(120)cot(240)
G=622+tan(150)sec(210)csc(120)cot(240)
Step 1.17
Raise 2 to the power of 2.
G=64+tan(150)sec(210)csc(120)cot(240)
Step 1.18
Cancel the common factor of 6 and 4.
Step 1.18.1
Factor 2 out of 6.
G=2(3)4+tan(150)sec(210)csc(120)cot(240)
Step 1.18.2
Cancel the common factors.
Step 1.18.2.1
Factor 2 out of 4.
G=2⋅32⋅2+tan(150)sec(210)csc(120)cot(240)
Step 1.18.2.2
Cancel the common factor.
G=2⋅32⋅2+tan(150)sec(210)csc(120)cot(240)
Step 1.18.2.3
Rewrite the expression.
G=32+tan(150)sec(210)csc(120)cot(240)
G=32+tan(150)sec(210)csc(120)cot(240)
G=32+tan(150)sec(210)csc(120)cot(240)
Step 1.19
Multiply the numerator by the reciprocal of the denominator.
G=32+tan(150)sec(210)⋅cot(240)csc(120)
Step 1.20
Simplify the numerator.
Step 1.20.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the second quadrant.
G=32+-tan(30)sec(210)⋅cot(240)csc(120)
Step 1.20.2
The exact value of tan(30) is √33.
G=32+-√33sec(210)⋅cot(240)csc(120)
G=32+-√33sec(210)⋅cot(240)csc(120)
Step 1.21
Simplify the denominator.
Step 1.21.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because secant is negative in the third quadrant.
G=32+-√33-sec(30)⋅cot(240)csc(120)
Step 1.21.2
The exact value of sec(30) is 2√3.
G=32+-√33-2√3⋅cot(240)csc(120)
Step 1.21.3
Multiply 2√3 by √3√3.
G=32+-√33-(2√3⋅√3√3)⋅cot(240)csc(120)
Step 1.21.4
Combine and simplify the denominator.
Step 1.21.4.1
Multiply 2√3 by √3√3.
G=32+-√33-2√3√3√3⋅cot(240)csc(120)
Step 1.21.4.2
Raise √3 to the power of 1.
G=32+-√33-2√3√31√3⋅cot(240)csc(120)
Step 1.21.4.3
Raise √3 to the power of 1.
G=32+-√33-2√3√31√31⋅cot(240)csc(120)
Step 1.21.4.4
Use the power rule aman=am+n to combine exponents.
G=32+-√33-2√3√31+1⋅cot(240)csc(120)
Step 1.21.4.5
Add 1 and 1.
G=32+-√33-2√3√32⋅cot(240)csc(120)
Step 1.21.4.6
Rewrite √32 as 3.
Step 1.21.4.6.1
Use n√ax=axn to rewrite √3 as 312.
G=32+-√33-2√3(312)2⋅cot(240)csc(120)
Step 1.21.4.6.2
Apply the power rule and multiply exponents, (am)n=amn.
G=32+-√33-2√3312⋅2⋅cot(240)csc(120)
Step 1.21.4.6.3
Combine 12 and 2.
G=32+-√33-2√3322⋅cot(240)csc(120)
Step 1.21.4.6.4
Cancel the common factor of 2.
Step 1.21.4.6.4.1
Cancel the common factor.
G=32+-√33-2√3322⋅cot(240)csc(120)
Step 1.21.4.6.4.2
Rewrite the expression.
G=32+-√33-2√331⋅cot(240)csc(120)
G=32+-√33-2√331⋅cot(240)csc(120)
Step 1.21.4.6.5
Evaluate the exponent.
G=32+-√33-2√33⋅cot(240)csc(120)
G=32+-√33-2√33⋅cot(240)csc(120)
G=32+-√33-2√33⋅cot(240)csc(120)
G=32+-√33-2√33⋅cot(240)csc(120)
Step 1.22
Dividing two negative values results in a positive value.
G=32+√332√33⋅cot(240)csc(120)
Step 1.23
Multiply the numerator by the reciprocal of the denominator.
G=32+√33⋅32√3cot(240)csc(120)
Step 1.24
Cancel the common factor of √3.
Step 1.24.1
Factor √3 out of 2√3.
G=32+√33⋅3√3⋅2cot(240)csc(120)
Step 1.24.2
Cancel the common factor.
G=32+√33⋅3√3⋅2cot(240)csc(120)
Step 1.24.3
Rewrite the expression.
G=32+13⋅32cot(240)csc(120)
G=32+13⋅32cot(240)csc(120)
Step 1.25
Cancel the common factor of 3.
Step 1.25.1
Cancel the common factor.
G=32+13⋅32cot(240)csc(120)
Step 1.25.2
Rewrite the expression.
G=32+12⋅cot(240)csc(120)
G=32+12⋅cot(240)csc(120)
Step 1.26
Rewrite csc(120) in terms of sines and cosines.
G=32+12⋅cot(240)1sin(120)
Step 1.27
Rewrite cot(240) in terms of sines and cosines.
G=32+12⋅cos(240)sin(240)1sin(120)
Step 1.28
Multiply by the reciprocal of the fraction to divide by 1sin(120).
G=32+12(cos(240)sin(240)sin(120))
Step 1.29
Write sin(120) as a fraction with denominator 1.
G=32+12(cos(240)sin(240)⋅sin(120)1)
Step 1.30
Simplify.
Step 1.30.1
Divide sin(120) by 1.
G=32+12(cos(240)sin(240)sin(120))
Step 1.30.2
Combine cos(240)sin(240) and sin(120).
G=32+12⋅cos(240)sin(120)sin(240)
G=32+12⋅cos(240)sin(120)sin(240)
Step 1.31
Simplify the numerator.
Step 1.31.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the third quadrant.
G=32+12⋅-cos(60)sin(120)sin(240)
Step 1.31.2
The exact value of cos(60) is 12.
G=32+12⋅-12sin(120)sin(240)
Step 1.31.3
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
G=32+12⋅-12sin(60)sin(240)
Step 1.31.4
The exact value of sin(60) is √32.
G=32+12⋅-12⋅√32sin(240)
Step 1.31.5
Combine exponents.
Step 1.31.5.1
Multiply √32 by 12.
G=32+12⋅-√32⋅2sin(240)
Step 1.31.5.2
Multiply 2 by 2.
G=32+12⋅-√34sin(240)
G=32+12⋅-√34sin(240)
G=32+12⋅-√34sin(240)
Step 1.32
Simplify the denominator.
Step 1.32.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because sine is negative in the third quadrant.
G=32+12⋅-√34-sin(60)
Step 1.32.2
The exact value of sin(60) is √32.
G=32+12⋅-√34-√32
G=32+12⋅-√34-√32
Step 1.33
Dividing two negative values results in a positive value.
G=32+12⋅√34√32
Step 1.34
Multiply the numerator by the reciprocal of the denominator.
G=32+12(√34⋅2√3)
Step 1.35
Cancel the common factor of √3.
Step 1.35.1
Cancel the common factor.
G=32+12(√34⋅2√3)
Step 1.35.2
Rewrite the expression.
G=32+12(14⋅2)
G=32+12(14⋅2)
Step 1.36
Cancel the common factor of 2.
Step 1.36.1
Factor 2 out of 4.
G=32+12(12(2)⋅2)
Step 1.36.2
Cancel the common factor.
G=32+12(12⋅2⋅2)
Step 1.36.3
Rewrite the expression.
G=32+12⋅12
G=32+12⋅12
Step 1.37
Multiply 12⋅12.
Step 1.37.1
Multiply 12 by 12.
G=32+12⋅2
Step 1.37.2
Multiply 2 by 2.
G=32+14
G=32+14
G=32+14
Step 2
To write 32 as a fraction with a common denominator, multiply by 22.
G=32⋅22+14
Step 3
Step 3.1
Multiply 32 by 22.
G=3⋅22⋅2+14
Step 3.2
Multiply 2 by 2.
G=3⋅24+14
G=3⋅24+14
Step 4
Combine the numerators over the common denominator.
G=3⋅2+14
Step 5
Step 5.1
Multiply 3 by 2.
G=6+14
Step 5.2
Add 6 and 1.
G=74
G=74
Step 6
The result can be shown in multiple forms.
Exact Form:
G=74
Decimal Form:
G=1.75
Mixed Number Form:
G=134