Basic Math Examples

Solve for G G=((sin(120))/(cos(225)))^(sec(300))+((tan(150))/(sec(210)))/((csc(120))/(cot(240)))
G=(sin(120)cos(225))sec(300)+tan(150)sec(210)csc(120)cot(240)G=(sin(120)cos(225))sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Simplify the numerator.
Tap for more steps...
Step 1.1.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
G=(sin(60)cos(225))sec(300)+tan(150)sec(210)csc(120)cot(240)G=(sin(60)cos(225))sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.1.2
The exact value of sin(60)sin(60) is 3232.
G=(32cos(225))sec(300)+tan(150)sec(210)csc(120)cot(240)G=32cos(225)sec(300)+tan(150)sec(210)csc(120)cot(240)
G=(32cos(225))sec(300)+tan(150)sec(210)csc(120)cot(240)G=32cos(225)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.2
Simplify the denominator.
Tap for more steps...
Step 1.2.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the third quadrant.
G=(32-cos(45))sec(300)+tan(150)sec(210)csc(120)cot(240)G=32cos(45)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.2.2
The exact value of cos(45)cos(45) is 2222.
G=(32-22)sec(300)+tan(150)sec(210)csc(120)cot(240)G=3222sec(300)+tan(150)sec(210)csc(120)cot(240)
G=(32-22)sec(300)+tan(150)sec(210)csc(120)cot(240)G=3222sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.3
Multiply the numerator by the reciprocal of the denominator.
G=(32(-22))sec(300)+tan(150)sec(210)csc(120)cot(240)G=(32(22))sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.4
Cancel the common factor of 22.
Tap for more steps...
Step 1.4.1
Move the leading negative in -2222 into the numerator.
G=(32-22)sec(300)+tan(150)sec(210)csc(120)cot(240)G=(3222)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.4.2
Factor 22 out of -22.
G=(322(-1)2)sec(300)+tan(150)sec(210)csc(120)cot(240)G=(322(1)2)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.4.3
Cancel the common factor.
G=(322-12)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.4.4
Rewrite the expression.
G=(3-12)sec(300)+tan(150)sec(210)csc(120)cot(240)
G=(3-12)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.5
Combine 3 and -12.
G=(3-12)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.6
Simplify the numerator.
Tap for more steps...
Step 1.6.1
Move -1 to the left of 3.
G=(-132)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.6.2
Rewrite -13 as -3.
G=(-32)sec(300)+tan(150)sec(210)csc(120)cot(240)
G=(-32)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.7
Move the negative in front of the fraction.
G=(-32)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.8
Multiply 32 by 22.
G=(-(3222))sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.9
Combine and simplify the denominator.
Tap for more steps...
Step 1.9.1
Multiply 32 by 22.
G=(-3222)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.9.2
Raise 2 to the power of 1.
G=(-32212)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.9.3
Raise 2 to the power of 1.
G=(-322121)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.9.4
Use the power rule aman=am+n to combine exponents.
G=(-3221+1)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.9.5
Add 1 and 1.
G=(-3222)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.9.6
Rewrite 22 as 2.
Tap for more steps...
Step 1.9.6.1
Use nax=axn to rewrite 2 as 212.
G=(-32(212)2)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.9.6.2
Apply the power rule and multiply exponents, (am)n=amn.
G=(-322122)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.9.6.3
Combine 12 and 2.
G=(-32222)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.9.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 1.9.6.4.1
Cancel the common factor.
G=(-32222)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.9.6.4.2
Rewrite the expression.
G=(-3221)sec(300)+tan(150)sec(210)csc(120)cot(240)
G=(-3221)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.9.6.5
Evaluate the exponent.
G=(-322)sec(300)+tan(150)sec(210)csc(120)cot(240)
G=(-322)sec(300)+tan(150)sec(210)csc(120)cot(240)
G=(-322)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.10
Simplify the numerator.
Tap for more steps...
Step 1.10.1
Combine using the product rule for radicals.
G=(-322)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.10.2
Multiply 3 by 2.
G=(-62)sec(300)+tan(150)sec(210)csc(120)cot(240)
G=(-62)sec(300)+tan(150)sec(210)csc(120)cot(240)
Step 1.11
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
G=(-62)sec(60)+tan(150)sec(210)csc(120)cot(240)
Step 1.12
The exact value of sec(60) is 2.
G=(-62)2+tan(150)sec(210)csc(120)cot(240)
Step 1.13
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 1.13.1
Apply the product rule to -62.
G=(-1)2(62)2+tan(150)sec(210)csc(120)cot(240)
Step 1.13.2
Apply the product rule to 62.
G=(-1)26222+tan(150)sec(210)csc(120)cot(240)
G=(-1)26222+tan(150)sec(210)csc(120)cot(240)
Step 1.14
Raise -1 to the power of 2.
G=16222+tan(150)sec(210)csc(120)cot(240)
Step 1.15
Multiply 6222 by 1.
G=6222+tan(150)sec(210)csc(120)cot(240)
Step 1.16
Rewrite 62 as 6.
Tap for more steps...
Step 1.16.1
Use nax=axn to rewrite 6 as 612.
G=(612)222+tan(150)sec(210)csc(120)cot(240)
Step 1.16.2
Apply the power rule and multiply exponents, (am)n=amn.
G=612222+tan(150)sec(210)csc(120)cot(240)
Step 1.16.3
Combine 12 and 2.
G=62222+tan(150)sec(210)csc(120)cot(240)
Step 1.16.4
Cancel the common factor of 2.
Tap for more steps...
Step 1.16.4.1
Cancel the common factor.
G=62222+tan(150)sec(210)csc(120)cot(240)
Step 1.16.4.2
Rewrite the expression.
G=6122+tan(150)sec(210)csc(120)cot(240)
G=6122+tan(150)sec(210)csc(120)cot(240)
Step 1.16.5
Evaluate the exponent.
G=622+tan(150)sec(210)csc(120)cot(240)
G=622+tan(150)sec(210)csc(120)cot(240)
Step 1.17
Raise 2 to the power of 2.
G=64+tan(150)sec(210)csc(120)cot(240)
Step 1.18
Cancel the common factor of 6 and 4.
Tap for more steps...
Step 1.18.1
Factor 2 out of 6.
G=2(3)4+tan(150)sec(210)csc(120)cot(240)
Step 1.18.2
Cancel the common factors.
Tap for more steps...
Step 1.18.2.1
Factor 2 out of 4.
G=2322+tan(150)sec(210)csc(120)cot(240)
Step 1.18.2.2
Cancel the common factor.
G=2322+tan(150)sec(210)csc(120)cot(240)
Step 1.18.2.3
Rewrite the expression.
G=32+tan(150)sec(210)csc(120)cot(240)
G=32+tan(150)sec(210)csc(120)cot(240)
G=32+tan(150)sec(210)csc(120)cot(240)
Step 1.19
Multiply the numerator by the reciprocal of the denominator.
G=32+tan(150)sec(210)cot(240)csc(120)
Step 1.20
Simplify the numerator.
Tap for more steps...
Step 1.20.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the second quadrant.
G=32+-tan(30)sec(210)cot(240)csc(120)
Step 1.20.2
The exact value of tan(30) is 33.
G=32+-33sec(210)cot(240)csc(120)
G=32+-33sec(210)cot(240)csc(120)
Step 1.21
Simplify the denominator.
Tap for more steps...
Step 1.21.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because secant is negative in the third quadrant.
G=32+-33-sec(30)cot(240)csc(120)
Step 1.21.2
The exact value of sec(30) is 23.
G=32+-33-23cot(240)csc(120)
Step 1.21.3
Multiply 23 by 33.
G=32+-33-(2333)cot(240)csc(120)
Step 1.21.4
Combine and simplify the denominator.
Tap for more steps...
Step 1.21.4.1
Multiply 23 by 33.
G=32+-33-2333cot(240)csc(120)
Step 1.21.4.2
Raise 3 to the power of 1.
G=32+-33-23313cot(240)csc(120)
Step 1.21.4.3
Raise 3 to the power of 1.
G=32+-33-233131cot(240)csc(120)
Step 1.21.4.4
Use the power rule aman=am+n to combine exponents.
G=32+-33-2331+1cot(240)csc(120)
Step 1.21.4.5
Add 1 and 1.
G=32+-33-2332cot(240)csc(120)
Step 1.21.4.6
Rewrite 32 as 3.
Tap for more steps...
Step 1.21.4.6.1
Use nax=axn to rewrite 3 as 312.
G=32+-33-23(312)2cot(240)csc(120)
Step 1.21.4.6.2
Apply the power rule and multiply exponents, (am)n=amn.
G=32+-33-233122cot(240)csc(120)
Step 1.21.4.6.3
Combine 12 and 2.
G=32+-33-23322cot(240)csc(120)
Step 1.21.4.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 1.21.4.6.4.1
Cancel the common factor.
G=32+-33-23322cot(240)csc(120)
Step 1.21.4.6.4.2
Rewrite the expression.
G=32+-33-2331cot(240)csc(120)
G=32+-33-2331cot(240)csc(120)
Step 1.21.4.6.5
Evaluate the exponent.
G=32+-33-233cot(240)csc(120)
G=32+-33-233cot(240)csc(120)
G=32+-33-233cot(240)csc(120)
G=32+-33-233cot(240)csc(120)
Step 1.22
Dividing two negative values results in a positive value.
G=32+33233cot(240)csc(120)
Step 1.23
Multiply the numerator by the reciprocal of the denominator.
G=32+33323cot(240)csc(120)
Step 1.24
Cancel the common factor of 3.
Tap for more steps...
Step 1.24.1
Factor 3 out of 23.
G=32+33332cot(240)csc(120)
Step 1.24.2
Cancel the common factor.
G=32+33332cot(240)csc(120)
Step 1.24.3
Rewrite the expression.
G=32+1332cot(240)csc(120)
G=32+1332cot(240)csc(120)
Step 1.25
Cancel the common factor of 3.
Tap for more steps...
Step 1.25.1
Cancel the common factor.
G=32+1332cot(240)csc(120)
Step 1.25.2
Rewrite the expression.
G=32+12cot(240)csc(120)
G=32+12cot(240)csc(120)
Step 1.26
Rewrite csc(120) in terms of sines and cosines.
G=32+12cot(240)1sin(120)
Step 1.27
Rewrite cot(240) in terms of sines and cosines.
G=32+12cos(240)sin(240)1sin(120)
Step 1.28
Multiply by the reciprocal of the fraction to divide by 1sin(120).
G=32+12(cos(240)sin(240)sin(120))
Step 1.29
Write sin(120) as a fraction with denominator 1.
G=32+12(cos(240)sin(240)sin(120)1)
Step 1.30
Simplify.
Tap for more steps...
Step 1.30.1
Divide sin(120) by 1.
G=32+12(cos(240)sin(240)sin(120))
Step 1.30.2
Combine cos(240)sin(240) and sin(120).
G=32+12cos(240)sin(120)sin(240)
G=32+12cos(240)sin(120)sin(240)
Step 1.31
Simplify the numerator.
Tap for more steps...
Step 1.31.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the third quadrant.
G=32+12-cos(60)sin(120)sin(240)
Step 1.31.2
The exact value of cos(60) is 12.
G=32+12-12sin(120)sin(240)
Step 1.31.3
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
G=32+12-12sin(60)sin(240)
Step 1.31.4
The exact value of sin(60) is 32.
G=32+12-1232sin(240)
Step 1.31.5
Combine exponents.
Tap for more steps...
Step 1.31.5.1
Multiply 32 by 12.
G=32+12-322sin(240)
Step 1.31.5.2
Multiply 2 by 2.
G=32+12-34sin(240)
G=32+12-34sin(240)
G=32+12-34sin(240)
Step 1.32
Simplify the denominator.
Tap for more steps...
Step 1.32.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because sine is negative in the third quadrant.
G=32+12-34-sin(60)
Step 1.32.2
The exact value of sin(60) is 32.
G=32+12-34-32
G=32+12-34-32
Step 1.33
Dividing two negative values results in a positive value.
G=32+123432
Step 1.34
Multiply the numerator by the reciprocal of the denominator.
G=32+12(3423)
Step 1.35
Cancel the common factor of 3.
Tap for more steps...
Step 1.35.1
Cancel the common factor.
G=32+12(3423)
Step 1.35.2
Rewrite the expression.
G=32+12(142)
G=32+12(142)
Step 1.36
Cancel the common factor of 2.
Tap for more steps...
Step 1.36.1
Factor 2 out of 4.
G=32+12(12(2)2)
Step 1.36.2
Cancel the common factor.
G=32+12(1222)
Step 1.36.3
Rewrite the expression.
G=32+1212
G=32+1212
Step 1.37
Multiply 1212.
Tap for more steps...
Step 1.37.1
Multiply 12 by 12.
G=32+122
Step 1.37.2
Multiply 2 by 2.
G=32+14
G=32+14
G=32+14
Step 2
To write 32 as a fraction with a common denominator, multiply by 22.
G=3222+14
Step 3
Write each expression with a common denominator of 4, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 3.1
Multiply 32 by 22.
G=3222+14
Step 3.2
Multiply 2 by 2.
G=324+14
G=324+14
Step 4
Combine the numerators over the common denominator.
G=32+14
Step 5
Simplify the numerator.
Tap for more steps...
Step 5.1
Multiply 3 by 2.
G=6+14
Step 5.2
Add 6 and 1.
G=74
G=74
Step 6
The result can be shown in multiple forms.
Exact Form:
G=74
Decimal Form:
G=1.75
Mixed Number Form:
G=134
 [x2  12  π  xdx ]