Basic Math Examples

Solve for a a-2=a/3
a-2=a3a2=a3
Step 1
Multiply both sides by 33.
(a-2)3=a33(a2)3=a33
Step 2
Simplify.
Tap for more steps...
Step 2.1
Simplify the left side.
Tap for more steps...
Step 2.1.1
Simplify (a-2)3(a2)3.
Tap for more steps...
Step 2.1.1.1
Apply the distributive property.
a3-23=a33a323=a33
Step 2.1.1.2
Simplify the expression.
Tap for more steps...
Step 2.1.1.2.1
Move 33 to the left of aa.
3a-23=a333a23=a33
Step 2.1.1.2.2
Multiply -22 by 33.
3a-6=a333a6=a33
3a-6=a333a6=a33
3a-6=a333a6=a33
3a-6=a333a6=a33
Step 2.2
Simplify the right side.
Tap for more steps...
Step 2.2.1
Cancel the common factor of 33.
Tap for more steps...
Step 2.2.1.1
Cancel the common factor.
3a-6=a33
Step 2.2.1.2
Rewrite the expression.
3a-6=a
3a-6=a
3a-6=a
3a-6=a
Step 3
Solve for a.
Tap for more steps...
Step 3.1
Move all terms containing a to the left side of the equation.
Tap for more steps...
Step 3.1.1
Subtract a from both sides of the equation.
3a-6-a=0
Step 3.1.2
Subtract a from 3a.
2a-6=0
2a-6=0
Step 3.2
Add 6 to both sides of the equation.
2a=6
Step 3.3
Divide each term in 2a=6 by 2 and simplify.
Tap for more steps...
Step 3.3.1
Divide each term in 2a=6 by 2.
2a2=62
Step 3.3.2
Simplify the left side.
Tap for more steps...
Step 3.3.2.1
Cancel the common factor of 2.
Tap for more steps...
Step 3.3.2.1.1
Cancel the common factor.
2a2=62
Step 3.3.2.1.2
Divide a by 1.
a=62
a=62
a=62
Step 3.3.3
Simplify the right side.
Tap for more steps...
Step 3.3.3.1
Divide 6 by 2.
a=3
a=3
a=3
a=3
 [x2  12  π  xdx ]