Enter a problem...
Basic Math Examples
23=1202⋅3.14⋅((0.467+2⋅h⋅0.6)(0.33+2⋅h⋅0.6))23=1202⋅3.14⋅((0.467+2⋅h⋅0.6)(0.33+2⋅h⋅0.6))
Step 1
Rewrite the equation as 1202⋅3.14⋅((0.467+2⋅h⋅0.6)(0.33+2⋅h⋅0.6))=231202⋅3.14⋅((0.467+2⋅h⋅0.6)(0.33+2⋅h⋅0.6))=23.
1202⋅3.14⋅((0.467+2⋅h⋅0.6)(0.33+2⋅h⋅0.6))=231202⋅3.14⋅((0.467+2⋅h⋅0.6)(0.33+2⋅h⋅0.6))=23
Step 2
Step 2.1
Combine exponents.
Step 2.1.1
Multiply 22 by 3.143.14.
1206.28⋅(0.467+2⋅h⋅0.6)(0.33+2⋅h⋅0.6)=231206.28⋅(0.467+2⋅h⋅0.6)(0.33+2⋅h⋅0.6)=23
Step 2.1.2
Multiply 0.60.6 by 22.
1206.28⋅(0.467+1.2⋅h)(0.33+2⋅h⋅0.6)=231206.28⋅(0.467+1.2⋅h)(0.33+2⋅h⋅0.6)=23
Step 2.1.3
Multiply 0.60.6 by 22.
1206.28⋅(0.467+1.2⋅h)(0.33+1.2⋅h)=231206.28⋅(0.467+1.2⋅h)(0.33+1.2⋅h)=23
1206.28⋅(0.467+1.2⋅h)(0.33+1.2⋅h)=231206.28⋅(0.467+1.2⋅h)(0.33+1.2⋅h)=23
Step 2.2
Simplify the denominator.
Step 2.2.1
Factor 0.001 out of 0.467+1.2⋅h.
Step 2.2.1.1
Factor 0.001 out of 0.467.
1206.28⋅(0.001(467)+1.2⋅h)(0.33+1.2⋅h)=23
Step 2.2.1.2
Factor 0.001 out of 1.2⋅h.
1206.28⋅(0.001(467)+0.001(1200⋅h))(0.33+1.2⋅h)=23
Step 2.2.1.3
Factor 0.001 out of 0.001(467)+0.001(1200⋅h).
1206.28⋅(0.001(467+1200⋅h))(0.33+1.2⋅h)=23
1206.28⋅(0.001(467+1200h))(0.33+1.2⋅h)=23
Step 2.2.2
Remove unnecessary parentheses.
1206.28⋅0.001(467+1200h)(0.33+1.2⋅h)=23
Step 2.2.3
Multiply 6.28 by 0.001.
1200.00628(467+1200h)(0.33+1.2h)=23
Step 2.2.4
Factor.
Step 2.2.4.1
Factor 0.03 out of 0.33+1.2h.
Step 2.2.4.1.1
Factor 0.03 out of 0.33.
1200.00628(467+1200h)(0.03(11)+1.2h)=23
Step 2.2.4.1.2
Factor 0.03 out of 1.2h.
1200.00628(467+1200h)(0.03(11)+0.03(40h))=23
Step 2.2.4.1.3
Factor 0.03 out of 0.03(11)+0.03(40h).
1200.00628(467+1200h)(0.03(11+40h))=23
1200.00628(467+1200h)(0.03(11+40h))=23
Step 2.2.4.2
Remove unnecessary parentheses.
1200.00628(467+1200h)⋅0.03(11+40h)=23
1200.00628(467+1200h)⋅0.03(11+40h)=23
Step 2.2.5
Multiply 0.03 by 0.00628.
1200.0001884(467+1200h)(11+40h)=23
1200.0001884(467+1200h)(11+40h)=23
Step 2.3
Factor 120 out of 120.
120(1)0.0001884(467+1200h)(11+40h)=23
Step 2.4
Factor 0.0001884 out of 0.0001884(467+1200h)(11+40h).
120(1)0.0001884((467+1200h)(11+40h))=23
Step 2.5
Separate fractions.
1200.0001884⋅1(467+1200h)(11+40h)=23
Step 2.6
Divide 120 by 0.0001884.
636942.675159231(467+1200h)(11+40h)=23
Step 2.7
Combine 636942.67515923 and 1(467+1200h)(11+40h).
636942.67515923(467+1200h)(11+40h)=23
636942.67515923(467+1200h)(11+40h)=23
Step 3
Step 3.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
(467+1200h)(11+40h),1
Step 3.2
The LCM of one and any expression is the expression.
(467+1200h)(11+40h)
(467+1200h)(11+40h)
Step 4
Step 4.1
Multiply each term in 636942.67515923(467+1200h)(11+40h)=23 by (467+1200h)(11+40h).
636942.67515923(467+1200h)(11+40h)((467+1200h)(11+40h))=23((467+1200h)(11+40h))
Step 4.2
Simplify the left side.
Step 4.2.1
Cancel the common factor of (467+1200h)(11+40h).
Step 4.2.1.1
Cancel the common factor.
636942.67515923(467+1200h)(11+40h)((467+1200h)(11+40h))=23((467+1200h)(11+40h))
Step 4.2.1.2
Rewrite the expression.
636942.67515923=23((467+1200h)(11+40h))
636942.67515923=23((467+1200h)(11+40h))
636942.67515923=23((467+1200h)(11+40h))
Step 4.3
Simplify the right side.
Step 4.3.1
Expand (467+1200h)(11+40h) using the FOIL Method.
Step 4.3.1.1
Apply the distributive property.
636942.67515923=23(467(11+40h)+1200h(11+40h))
Step 4.3.1.2
Apply the distributive property.
636942.67515923=23(467⋅11+467(40h)+1200h(11+40h))
Step 4.3.1.3
Apply the distributive property.
636942.67515923=23(467⋅11+467(40h)+1200h⋅11+1200h(40h))
636942.67515923=23(467⋅11+467(40h)+1200h⋅11+1200h(40h))
Step 4.3.2
Simplify and combine like terms.
Step 4.3.2.1
Simplify each term.
Step 4.3.2.1.1
Multiply 467 by 11.
636942.67515923=23(5137+467(40h)+1200h⋅11+1200h(40h))
Step 4.3.2.1.2
Multiply 40 by 467.
636942.67515923=23(5137+18680h+1200h⋅11+1200h(40h))
Step 4.3.2.1.3
Multiply 11 by 1200.
636942.67515923=23(5137+18680h+13200h+1200h(40h))
Step 4.3.2.1.4
Rewrite using the commutative property of multiplication.
636942.67515923=23(5137+18680h+13200h+1200⋅40h⋅h)
Step 4.3.2.1.5
Multiply h by h by adding the exponents.
Step 4.3.2.1.5.1
Move h.
636942.67515923=23(5137+18680h+13200h+1200⋅40(h⋅h))
Step 4.3.2.1.5.2
Multiply h by h.
636942.67515923=23(5137+18680h+13200h+1200⋅40h2)
636942.67515923=23(5137+18680h+13200h+1200⋅40h2)
Step 4.3.2.1.6
Multiply 1200 by 40.
636942.67515923=23(5137+18680h+13200h+48000h2)
636942.67515923=23(5137+18680h+13200h+48000h2)
Step 4.3.2.2
Add 18680h and 13200h.
636942.67515923=23(5137+31880h+48000h2)
636942.67515923=23(5137+31880h+48000h2)
Step 4.3.3
Apply the distributive property.
636942.67515923=23⋅5137+23(31880h)+23(48000h2)
Step 4.3.4
Simplify.
Step 4.3.4.1
Multiply 23 by 5137.
636942.67515923=118151+23(31880h)+23(48000h2)
Step 4.3.4.2
Multiply 31880 by 23.
636942.67515923=118151+733240h+23(48000h2)
Step 4.3.4.3
Multiply 48000 by 23.
636942.67515923=118151+733240h+1104000h2
636942.67515923=118151+733240h+1104000h2
636942.67515923=118151+733240h+1104000h2
636942.67515923=118151+733240h+1104000h2
Step 5
Step 5.1
Rewrite the equation as 118151+733240h+1104000h2=636942.67515923.
118151+733240h+1104000h2=636942.67515923
Step 5.2
Move all terms to the left side of the equation and simplify.
Step 5.2.1
Subtract 636942.67515923 from both sides of the equation.
118151+733240h+1104000h2-636942.67515923=0
Step 5.2.2
Subtract 636942.67515923 from 118151.
733240h+1104000h2-518791.67515923=0
733240h+1104000h2-518791.67515923=0
Step 5.3
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 5.4
Substitute the values a=1104000, b=733240, and c=-518791.67515923 into the quadratic formula and solve for h.
-733240±√7332402-4⋅(1104000⋅-518791.67515923)2⋅1104000
Step 5.5
Simplify.
Step 5.5.1
Simplify the numerator.
Step 5.5.1.1
Raise 733240 to the power of 2.
h=-733240±√537640897600-4⋅1104000⋅-518791.675159232⋅1104000
Step 5.5.1.2
Multiply -4⋅1104000⋅-518791.67515923.
Step 5.5.1.2.1
Multiply -4 by 1104000.
h=-733240±√537640897600-4416000⋅-518791.675159232⋅1104000
Step 5.5.1.2.2
Multiply -4416000 by -518791.67515923.
h=-733240±√537640897600+2290984037503.184713372⋅1104000
h=-733240±√537640897600+2290984037503.184713372⋅1104000
Step 5.5.1.3
Add 537640897600 and 2290984037503.18471337.
h=-733240±√2828624935103.184713372⋅1104000
h=-733240±√2828624935103.184713372⋅1104000
Step 5.5.2
Multiply 2 by 1104000.
h=-733240±√2828624935103.184713372208000
h=-733240±√2828624935103.184713372208000
Step 5.6
The final answer is the combination of both solutions.
h=-733240-√2828624935103.184713372208000,-733240+√2828624935103.184713372208000
h=-733240-√2828624935103.184713372208000,-733240+√2828624935103.184713372208000
Step 6
The result can be shown in multiple forms.
Exact Form:
h=-733240-√2828624935103.184713372208000,-733240+√2828624935103.184713372208000
Decimal Form:
h=0.42962483…,-1.09379150…