Enter a problem...
Basic Math Examples
-7(-3c+5)-5c=6(c-3)-2−7(−3c+5)−5c=6(c−3)−2
Step 1
Step 1.1
Simplify each term.
Step 1.1.1
Apply the distributive property.
-7(-3c)-7⋅5-5c=6(c-3)-2−7(−3c)−7⋅5−5c=6(c−3)−2
Step 1.1.2
Multiply -3−3 by -7−7.
21c-7⋅5-5c=6(c-3)-221c−7⋅5−5c=6(c−3)−2
Step 1.1.3
Multiply -7−7 by 5.
21c-35-5c=6(c-3)-2
21c-35-5c=6(c-3)-2
Step 1.2
Subtract 5c from 21c.
16c-35=6(c-3)-2
16c-35=6(c-3)-2
Step 2
Step 2.1
Simplify each term.
Step 2.1.1
Apply the distributive property.
16c-35=6c+6⋅-3-2
Step 2.1.2
Multiply 6 by -3.
16c-35=6c-18-2
16c-35=6c-18-2
Step 2.2
Subtract 2 from -18.
16c-35=6c-20
16c-35=6c-20
Step 3
Step 3.1
Subtract 6c from both sides of the equation.
16c-35-6c=-20
Step 3.2
Subtract 6c from 16c.
10c-35=-20
10c-35=-20
Step 4
Step 4.1
Add 35 to both sides of the equation.
10c=-20+35
Step 4.2
Add -20 and 35.
10c=15
10c=15
Step 5
Step 5.1
Divide each term in 10c=15 by 10.
10c10=1510
Step 5.2
Simplify the left side.
Step 5.2.1
Cancel the common factor of 10.
Step 5.2.1.1
Cancel the common factor.
10c10=1510
Step 5.2.1.2
Divide c by 1.
c=1510
c=1510
c=1510
Step 5.3
Simplify the right side.
Step 5.3.1
Cancel the common factor of 15 and 10.
Step 5.3.1.1
Factor 5 out of 15.
c=5(3)10
Step 5.3.1.2
Cancel the common factors.
Step 5.3.1.2.1
Factor 5 out of 10.
c=5⋅35⋅2
Step 5.3.1.2.2
Cancel the common factor.
c=5⋅35⋅2
Step 5.3.1.2.3
Rewrite the expression.
c=32
c=32
c=32
c=32
c=32
Step 6
The result can be shown in multiple forms.
Exact Form:
c=32
Decimal Form:
c=1.5
Mixed Number Form:
c=112