Enter a problem...
Basic Math Examples
3.14(d2)2=57⋅9.82.1⋅1083.14(d2)2=57⋅9.82.1⋅108
Step 1
Step 1.1
Multiply 5757 by 9.89.8.
3.14(d2)2=558.62.1⋅1083.14(d2)2=558.62.1⋅108
Step 1.2
Divide using scientific notation.
Step 1.2.1
Group coefficients together and exponents together to divide numbers in scientific notation.
3.14(d2)2=(558.62.1)(1108)3.14(d2)2=(558.62.1)(1108)
Step 1.2.2
Divide 558.6558.6 by 2.12.1.
3.14(d2)2=26611083.14(d2)2=2661108
Step 1.2.3
Move 108108 to the numerator using the negative exponent rule 1bn=b-n1bn=b−n.
3.14(d2)2=266⋅10-83.14(d2)2=266⋅10−8
3.14(d2)2=266⋅10-83.14(d2)2=266⋅10−8
Step 1.3
Move the decimal point in 266266 to the left by 22 places and increase the power of 10-810−8 by 22.
3.14(d2)2=2.66⋅10-63.14(d2)2=2.66⋅10−6
3.14(d2)2=2.66⋅10-63.14(d2)2=2.66⋅10−6
Step 2
Step 2.1
Divide each term in 3.14(d2)2=2.66⋅10-63.14(d2)2=2.66⋅10−6 by 3.143.14.
3.14(d2)23.14=2.66⋅10-63.143.14(d2)23.14=2.66⋅10−63.14
Step 2.2
Simplify the left side.
Step 2.2.1
Cancel the common factor of 3.143.14.
Step 2.2.1.1
Cancel the common factor.
3.14(d2)23.14=2.66⋅10-63.14
Step 2.2.1.2
Divide (d2)2 by 1.
(d2)2=2.66⋅10-63.14
(d2)2=2.66⋅10-63.14
Step 2.2.2
Simplify the expression.
Step 2.2.2.1
Apply the product rule to d2.
d222=2.66⋅10-63.14
Step 2.2.2.2
Raise 2 to the power of 2.
d24=2.66⋅10-63.14
d24=2.66⋅10-63.14
d24=2.66⋅10-63.14
Step 2.3
Simplify the right side.
Step 2.3.1
Divide using scientific notation.
Step 2.3.1.1
Group coefficients together and exponents together to divide numbers in scientific notation.
d24=(2.663.14)(10-61)
Step 2.3.1.2
Divide 2.66 by 3.14.
d24=0.8471337510-61
Step 2.3.1.3
Divide 10-6 by 1.
d24=0.84713375⋅10-6
d24=0.84713375⋅10-6
Step 2.3.2
Move the decimal point in 0.84713375 to the right by 1 place and decrease the power of 10-6 by 1.
d24=8.47133757⋅10-7
d24=8.47133757⋅10-7
d24=8.47133757⋅10-7
Step 3
Multiply both sides of the equation by 4.
4d24=4⋅8.47133757⋅10-7
Step 4
Step 4.1
Simplify the left side.
Step 4.1.1
Cancel the common factor of 4.
Step 4.1.1.1
Cancel the common factor.
4d24=4⋅8.47133757⋅10-7
Step 4.1.1.2
Rewrite the expression.
d2=4⋅8.47133757⋅10-7
d2=4⋅8.47133757⋅10-7
d2=4⋅8.47133757⋅10-7
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify 4⋅8.47133757⋅10-7.
Step 4.2.1.1
Multiply 4 by 8.47133757.
d2=33.88535031⋅10-7
Step 4.2.1.2
Move the decimal point in 33.88535031 to the left by 1 place and increase the power of 10-7 by 1.
d2=3.38853503⋅10-6
d2=3.38853503⋅10-6
d2=3.38853503⋅10-6
d2=3.38853503⋅10-6
Step 5
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
d=±√3.38853503⋅10-6
Step 6
Step 6.1
Rewrite √3.38853503⋅10-6 as √3.38853503⋅√10-6.
d=±√3.38853503⋅√10-6
Step 6.2
Evaluate the root.
d=±1.84079739⋅√10-6
Step 6.3
Rewrite 10-6 as (10-3)2.
d=±1.84079739⋅√(10-3)2
Step 6.4
Pull terms out from under the radical, assuming positive real numbers.
d=±1.84079739⋅10-3
d=±1.84079739⋅10-3
Step 7
Step 7.1
First, use the positive value of the ± to find the first solution.
d=1.84079739⋅10-3
Step 7.2
Next, use the negative value of the ± to find the second solution.
d=-1.84079739⋅10-3
Step 7.3
The complete solution is the result of both the positive and negative portions of the solution.
d=1.84079739⋅10-3,-1.84079739⋅10-3
d=1.84079739⋅10-3,-1.84079739⋅10-3
Step 8
The result can be shown in multiple forms.
Scientific Notation:
d=1.84079739⋅10-3,-1.84079739⋅10-3
Expanded Form:
d=0.00184079,-0.00184079