Basic Math Examples

Solve for d 3.14(d/2)^2=(57*9.8)/(2.1*10^8)
3.14(d2)2=579.82.11083.14(d2)2=579.82.1108
Step 1
Simplify.
Tap for more steps...
Step 1.1
Multiply 5757 by 9.89.8.
3.14(d2)2=558.62.11083.14(d2)2=558.62.1108
Step 1.2
Divide using scientific notation.
Tap for more steps...
Step 1.2.1
Group coefficients together and exponents together to divide numbers in scientific notation.
3.14(d2)2=(558.62.1)(1108)3.14(d2)2=(558.62.1)(1108)
Step 1.2.2
Divide 558.6558.6 by 2.12.1.
3.14(d2)2=26611083.14(d2)2=2661108
Step 1.2.3
Move 108108 to the numerator using the negative exponent rule 1bn=b-n1bn=bn.
3.14(d2)2=26610-83.14(d2)2=266108
3.14(d2)2=26610-83.14(d2)2=266108
Step 1.3
Move the decimal point in 266266 to the left by 22 places and increase the power of 10-8108 by 22.
3.14(d2)2=2.6610-63.14(d2)2=2.66106
3.14(d2)2=2.6610-63.14(d2)2=2.66106
Step 2
Divide each term in 3.14(d2)2=2.6610-63.14(d2)2=2.66106 by 3.143.14 and simplify.
Tap for more steps...
Step 2.1
Divide each term in 3.14(d2)2=2.6610-63.14(d2)2=2.66106 by 3.143.14.
3.14(d2)23.14=2.6610-63.143.14(d2)23.14=2.661063.14
Step 2.2
Simplify the left side.
Tap for more steps...
Step 2.2.1
Cancel the common factor of 3.143.14.
Tap for more steps...
Step 2.2.1.1
Cancel the common factor.
3.14(d2)23.14=2.6610-63.14
Step 2.2.1.2
Divide (d2)2 by 1.
(d2)2=2.6610-63.14
(d2)2=2.6610-63.14
Step 2.2.2
Simplify the expression.
Tap for more steps...
Step 2.2.2.1
Apply the product rule to d2.
d222=2.6610-63.14
Step 2.2.2.2
Raise 2 to the power of 2.
d24=2.6610-63.14
d24=2.6610-63.14
d24=2.6610-63.14
Step 2.3
Simplify the right side.
Tap for more steps...
Step 2.3.1
Divide using scientific notation.
Tap for more steps...
Step 2.3.1.1
Group coefficients together and exponents together to divide numbers in scientific notation.
d24=(2.663.14)(10-61)
Step 2.3.1.2
Divide 2.66 by 3.14.
d24=0.8471337510-61
Step 2.3.1.3
Divide 10-6 by 1.
d24=0.8471337510-6
d24=0.8471337510-6
Step 2.3.2
Move the decimal point in 0.84713375 to the right by 1 place and decrease the power of 10-6 by 1.
d24=8.4713375710-7
d24=8.4713375710-7
d24=8.4713375710-7
Step 3
Multiply both sides of the equation by 4.
4d24=48.4713375710-7
Step 4
Simplify both sides of the equation.
Tap for more steps...
Step 4.1
Simplify the left side.
Tap for more steps...
Step 4.1.1
Cancel the common factor of 4.
Tap for more steps...
Step 4.1.1.1
Cancel the common factor.
4d24=48.4713375710-7
Step 4.1.1.2
Rewrite the expression.
d2=48.4713375710-7
d2=48.4713375710-7
d2=48.4713375710-7
Step 4.2
Simplify the right side.
Tap for more steps...
Step 4.2.1
Simplify 48.4713375710-7.
Tap for more steps...
Step 4.2.1.1
Multiply 4 by 8.47133757.
d2=33.8853503110-7
Step 4.2.1.2
Move the decimal point in 33.88535031 to the left by 1 place and increase the power of 10-7 by 1.
d2=3.3885350310-6
d2=3.3885350310-6
d2=3.3885350310-6
d2=3.3885350310-6
Step 5
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
d=±3.3885350310-6
Step 6
Simplify ±3.3885350310-6.
Tap for more steps...
Step 6.1
Rewrite 3.3885350310-6 as 3.3885350310-6.
d=±3.3885350310-6
Step 6.2
Evaluate the root.
d=±1.8407973910-6
Step 6.3
Rewrite 10-6 as (10-3)2.
d=±1.84079739(10-3)2
Step 6.4
Pull terms out from under the radical, assuming positive real numbers.
d=±1.8407973910-3
d=±1.8407973910-3
Step 7
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 7.1
First, use the positive value of the ± to find the first solution.
d=1.8407973910-3
Step 7.2
Next, use the negative value of the ± to find the second solution.
d=-1.8407973910-3
Step 7.3
The complete solution is the result of both the positive and negative portions of the solution.
d=1.8407973910-3,-1.8407973910-3
d=1.8407973910-3,-1.8407973910-3
Step 8
The result can be shown in multiple forms.
Scientific Notation:
d=1.8407973910-3,-1.8407973910-3
Expanded Form:
d=0.00184079,-0.00184079
 [x2  12  π  xdx ]