Basic Math Examples

Solve for A A=1/2*(h(B+b)forh)
A=12(h(B+b)forh)A=12(h(B+b)forh)
Step 1
Remove parentheses.
A=12((h(B+b)for)h)A=12((h(B+b)for)h)
Step 2
Remove parentheses.
A=12((h(B+b)fo)rh)A=12((h(B+b)fo)rh)
Step 3
Remove parentheses.
A=12((h(B+b)f)orh)A=12((h(B+b)f)orh)
Step 4
Remove parentheses.
A=12((h(B+b))forh)A=12((h(B+b))forh)
Step 5
Remove parentheses.
A=12(h(B+b)forh)A=12(h(B+b)forh)
Step 6
Simplify 12(h(B+b)forh)12(h(B+b)forh).
Tap for more steps...
Step 6.1
Multiply hh by hh by adding the exponents.
Tap for more steps...
Step 6.1.1
Move hh.
A=12(hh(B+b)for)A=12(hh(B+b)for)
Step 6.1.2
Multiply hh by hh.
A=12(h2(B+b)for)A=12(h2(B+b)for)
A=12(h2(B+b)for)A=12(h2(B+b)for)
Step 6.2
Apply the distributive property.
A=12((h2B+h2b)for)A=12((h2B+h2b)for)
Step 6.3
Apply the distributive property.
A=12((h2Bf+h2bf)or)A=12((h2Bf+h2bf)or)
Step 6.4
Apply the distributive property.
A=12((h2Bfo+h2bfo)r)A=12((h2Bfo+h2bfo)r)
Step 6.5
Apply the distributive property.
A=12(h2Bfor+h2bfor)A=12(h2Bfor+h2bfor)
Step 6.6
Apply the distributive property.
A=12(h2Bfor)+12(h2bfor)A=12(h2Bfor)+12(h2bfor)
Step 6.7
Multiply 12(h2Bfor)12(h2Bfor).
Tap for more steps...
Step 6.7.1
Combine h2h2 and 1212.
A=h22(Bfor)+12(h2bfor)A=h22(Bfor)+12(h2bfor)
Step 6.7.2
Combine BB and h22h22.
A=Bh22(for)+12(h2bfor)A=Bh22(for)+12(h2bfor)
Step 6.7.3
Combine ff and Bh22Bh22.
A=f(Bh2)2(or)+12(h2bfor)A=f(Bh2)2(or)+12(h2bfor)
Step 6.7.4
Combine oo and f(Bh2)2f(Bh2)2.
A=o(f(Bh2))2r+12(h2bfor)A=o(f(Bh2))2r+12(h2bfor)
Step 6.7.5
Combine o(f(Bh2))2o(f(Bh2))2 and rr.
A=o(f(Bh2))r2+12(h2bfor)A=o(f(Bh2))r2+12(h2bfor)
A=o(f(Bh2))r2+12(h2bfor)A=o(f(Bh2))r2+12(h2bfor)
Step 6.8
Multiply 12(h2bfor)12(h2bfor).
Tap for more steps...
Step 6.8.1
Combine h2h2 and 1212.
A=o(f(Bh2))r2+h22(bfor)A=o(f(Bh2))r2+h22(bfor)
Step 6.8.2
Combine bb and h22h22.
A=o(f(Bh2))r2+bh22(for)A=o(f(Bh2))r2+bh22(for)
Step 6.8.3
Combine ff and bh22bh22.
A=o(f(Bh2))r2+f(bh2)2(or)A=o(f(Bh2))r2+f(bh2)2(or)
Step 6.8.4
Combine oo and f(bh2)2f(bh2)2.
A=o(f(Bh2))r2+o(f(bh2))2rA=o(f(Bh2))r2+o(f(bh2))2r
Step 6.8.5
Combine o(f(bh2))2o(f(bh2))2 and rr.
A=o(f(Bh2))r2+o(f(bh2))r2A=o(f(Bh2))r2+o(f(bh2))r2
A=o(f(Bh2))r2+o(f(bh2))r2A=o(f(Bh2))r2+o(f(bh2))r2
Step 6.9
Remove parentheses.
A=ofBh2r2+ofbh2r2A=ofBh2r2+ofbh2r2
Step 6.10
Simplify the expression.
Tap for more steps...
Step 6.10.1
Move BB.
A=ofh2rB2+ofbh2r2A=ofh2rB2+ofbh2r2
Step 6.10.2
Move oo.
A=fh2orB2+ofbh2r2A=fh2orB2+ofbh2r2
Step 6.10.3
Move oo.
A=fh2orB2+fbh2or2A=fh2orB2+fbh2or2
Step 6.10.4
Reorder ff and bb.
A=fh2orB2+bfh2or2A=fh2orB2+bfh2or2
A=fh2orB2+bfh2or2A=fh2orB2+bfh2or2
A=fh2orB2+bfh2or2A=fh2orB2+bfh2or2
 [x2  12  π  xdx ]  x2  12  π  xdx