Basic Math Examples

Solve for a b^2+6b+a=(b+a)^2
b2+6b+a=(b+a)2b2+6b+a=(b+a)2
Step 1
Simplify (b+a)2(b+a)2.
Tap for more steps...
Step 1.1
Rewrite.
b2+6b+a=0+0+(b+a)2b2+6b+a=0+0+(b+a)2
Step 1.2
Rewrite (b+a)2(b+a)2 as (b+a)(b+a)(b+a)(b+a).
b2+6b+a=(b+a)(b+a)b2+6b+a=(b+a)(b+a)
Step 1.3
Expand (b+a)(b+a)(b+a)(b+a) using the FOIL Method.
Tap for more steps...
Step 1.3.1
Apply the distributive property.
b2+6b+a=b(b+a)+a(b+a)b2+6b+a=b(b+a)+a(b+a)
Step 1.3.2
Apply the distributive property.
b2+6b+a=bb+ba+a(b+a)b2+6b+a=bb+ba+a(b+a)
Step 1.3.3
Apply the distributive property.
b2+6b+a=bb+ba+ab+aab2+6b+a=bb+ba+ab+aa
b2+6b+a=bb+ba+ab+aab2+6b+a=bb+ba+ab+aa
Step 1.4
Simplify and combine like terms.
Tap for more steps...
Step 1.4.1
Simplify each term.
Tap for more steps...
Step 1.4.1.1
Multiply bb by bb.
b2+6b+a=b2+ba+ab+aab2+6b+a=b2+ba+ab+aa
Step 1.4.1.2
Multiply aa by aa.
b2+6b+a=b2+ba+ab+a2b2+6b+a=b2+ba+ab+a2
b2+6b+a=b2+ba+ab+a2b2+6b+a=b2+ba+ab+a2
Step 1.4.2
Add baba and abab.
Tap for more steps...
Step 1.4.2.1
Reorder bb and aa.
b2+6b+a=b2+ab+ab+a2b2+6b+a=b2+ab+ab+a2
Step 1.4.2.2
Add abab and abab.
b2+6b+a=b2+2ab+a2b2+6b+a=b2+2ab+a2
b2+6b+a=b2+2ab+a2b2+6b+a=b2+2ab+a2
b2+6b+a=b2+2ab+a2b2+6b+a=b2+2ab+a2
b2+6b+a=b2+2ab+a2
Step 2
Since a is on the right side of the equation, switch the sides so it is on the left side of the equation.
b2+2ab+a2=b2+6b+a
Step 3
Subtract a from both sides of the equation.
b2+2ab+a2-a=b2+6b
Step 4
Move all terms to the left side of the equation and simplify.
Tap for more steps...
Step 4.1
Move all the expressions to the left side of the equation.
Tap for more steps...
Step 4.1.1
Subtract b2 from both sides of the equation.
b2+2ab+a2-a-b2=6b
Step 4.1.2
Subtract 6b from both sides of the equation.
b2+2ab+a2-a-b2-6b=0
b2+2ab+a2-a-b2-6b=0
Step 4.2
Combine the opposite terms in b2+2ab+a2-a-b2-6b.
Tap for more steps...
Step 4.2.1
Subtract b2 from b2.
2ab+a2-a+0-6b=0
Step 4.2.2
Add 2ab+a2-a and 0.
2ab+a2-a-6b=0
2ab+a2-a-6b=0
2ab+a2-a-6b=0
Step 5
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 6
Substitute the values a=1, b=2b-1, and c=-6b into the quadratic formula and solve for a.
-(2b-1)±(2b-1)2-4(1(-6b))21
Step 7
Simplify.
Tap for more steps...
Step 7.1
Simplify the numerator.
Tap for more steps...
Step 7.1.1
Apply the distributive property.
a=-(2b)+1±(2b-1)2-41(-6b)21
Step 7.1.2
Multiply 2 by -1.
a=-2b+1±(2b-1)2-41(-6b)21
Step 7.1.3
Multiply -1 by -1.
a=-2b+1±(2b-1)2-41(-6b)21
Step 7.1.4
Rewrite (2b-1)2 as (2b-1)(2b-1).
a=-2b+1±(2b-1)(2b-1)-41(-6b)21
Step 7.1.5
Expand (2b-1)(2b-1) using the FOIL Method.
Tap for more steps...
Step 7.1.5.1
Apply the distributive property.
a=-2b+1±2b(2b-1)-1(2b-1)-41(-6b)21
Step 7.1.5.2
Apply the distributive property.
a=-2b+1±2b(2b)+2b-1-1(2b-1)-41(-6b)21
Step 7.1.5.3
Apply the distributive property.
a=-2b+1±2b(2b)+2b-1-1(2b)-1-1-41(-6b)21
a=-2b+1±2b(2b)+2b-1-1(2b)-1-1-41(-6b)21
Step 7.1.6
Simplify and combine like terms.
Tap for more steps...
Step 7.1.6.1
Simplify each term.
Tap for more steps...
Step 7.1.6.1.1
Rewrite using the commutative property of multiplication.
a=-2b+1±2(2bb)+2b-1-1(2b)-1-1-41(-6b)21
Step 7.1.6.1.2
Multiply b by b by adding the exponents.
Tap for more steps...
Step 7.1.6.1.2.1
Move b.
a=-2b+1±2(2(bb))+2b-1-1(2b)-1-1-41(-6b)21
Step 7.1.6.1.2.2
Multiply b by b.
a=-2b+1±2(2b2)+2b-1-1(2b)-1-1-41(-6b)21
a=-2b+1±2(2b2)+2b-1-1(2b)-1-1-41(-6b)21
Step 7.1.6.1.3
Multiply 2 by 2.
a=-2b+1±4b2+2b-1-1(2b)-1-1-41(-6b)21
Step 7.1.6.1.4
Multiply -1 by 2.
a=-2b+1±4b2-2b-1(2b)-1-1-41(-6b)21
Step 7.1.6.1.5
Multiply 2 by -1.
a=-2b+1±4b2-2b-2b-1-1-41(-6b)21
Step 7.1.6.1.6
Multiply -1 by -1.
a=-2b+1±4b2-2b-2b+1-41(-6b)21
a=-2b+1±4b2-2b-2b+1-41(-6b)21
Step 7.1.6.2
Subtract 2b from -2b.
a=-2b+1±4b2-4b+1-41(-6b)21
a=-2b+1±4b2-4b+1-41(-6b)21
Step 7.1.7
Multiply -41-6.
Tap for more steps...
Step 7.1.7.1
Multiply -4 by 1.
a=-2b+1±4b2-4b+1-4(-6b)21
Step 7.1.7.2
Multiply -4 by -6.
a=-2b+1±4b2-4b+1+24b21
a=-2b+1±4b2-4b+1+24b21
Step 7.1.8
Add -4b and 24b.
a=-2b+1±4b2+20b+121
a=-2b+1±4b2+20b+121
Step 7.2
Multiply 2 by 1.
a=-2b+1±4b2+20b+12
a=-2b+1±4b2+20b+12
Step 8
The final answer is the combination of both solutions.
a=-2b-1-4b2+20b+12
a=-2b-1+4b2+20b+12
 [x2  12  π  xdx ]