Enter a problem...
Basic Math Examples
b2+6b+a=(b+a)2b2+6b+a=(b+a)2
Step 1
Step 1.1
Rewrite.
b2+6b+a=0+0+(b+a)2b2+6b+a=0+0+(b+a)2
Step 1.2
Rewrite (b+a)2(b+a)2 as (b+a)(b+a)(b+a)(b+a).
b2+6b+a=(b+a)(b+a)b2+6b+a=(b+a)(b+a)
Step 1.3
Expand (b+a)(b+a)(b+a)(b+a) using the FOIL Method.
Step 1.3.1
Apply the distributive property.
b2+6b+a=b(b+a)+a(b+a)b2+6b+a=b(b+a)+a(b+a)
Step 1.3.2
Apply the distributive property.
b2+6b+a=b⋅b+ba+a(b+a)b2+6b+a=b⋅b+ba+a(b+a)
Step 1.3.3
Apply the distributive property.
b2+6b+a=b⋅b+ba+ab+a⋅ab2+6b+a=b⋅b+ba+ab+a⋅a
b2+6b+a=b⋅b+ba+ab+a⋅ab2+6b+a=b⋅b+ba+ab+a⋅a
Step 1.4
Simplify and combine like terms.
Step 1.4.1
Simplify each term.
Step 1.4.1.1
Multiply bb by bb.
b2+6b+a=b2+ba+ab+a⋅ab2+6b+a=b2+ba+ab+a⋅a
Step 1.4.1.2
Multiply aa by aa.
b2+6b+a=b2+ba+ab+a2b2+6b+a=b2+ba+ab+a2
b2+6b+a=b2+ba+ab+a2b2+6b+a=b2+ba+ab+a2
Step 1.4.2
Add baba and abab.
Step 1.4.2.1
Reorder bb and aa.
b2+6b+a=b2+ab+ab+a2b2+6b+a=b2+ab+ab+a2
Step 1.4.2.2
Add abab and abab.
b2+6b+a=b2+2ab+a2b2+6b+a=b2+2ab+a2
b2+6b+a=b2+2ab+a2b2+6b+a=b2+2ab+a2
b2+6b+a=b2+2ab+a2b2+6b+a=b2+2ab+a2
b2+6b+a=b2+2ab+a2
Step 2
Since a is on the right side of the equation, switch the sides so it is on the left side of the equation.
b2+2ab+a2=b2+6b+a
Step 3
Subtract a from both sides of the equation.
b2+2ab+a2-a=b2+6b
Step 4
Step 4.1
Move all the expressions to the left side of the equation.
Step 4.1.1
Subtract b2 from both sides of the equation.
b2+2ab+a2-a-b2=6b
Step 4.1.2
Subtract 6b from both sides of the equation.
b2+2ab+a2-a-b2-6b=0
b2+2ab+a2-a-b2-6b=0
Step 4.2
Combine the opposite terms in b2+2ab+a2-a-b2-6b.
Step 4.2.1
Subtract b2 from b2.
2ab+a2-a+0-6b=0
Step 4.2.2
Add 2ab+a2-a and 0.
2ab+a2-a-6b=0
2ab+a2-a-6b=0
2ab+a2-a-6b=0
Step 5
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 6
Substitute the values a=1, b=2b-1, and c=-6b into the quadratic formula and solve for a.
-(2b-1)±√(2b-1)2-4⋅(1⋅(-6b))2⋅1
Step 7
Step 7.1
Simplify the numerator.
Step 7.1.1
Apply the distributive property.
a=-(2b)+1±√(2b-1)2-4⋅1⋅(-6b)2⋅1
Step 7.1.2
Multiply 2 by -1.
a=-2b+1±√(2b-1)2-4⋅1⋅(-6b)2⋅1
Step 7.1.3
Multiply -1 by -1.
a=-2b+1±√(2b-1)2-4⋅1⋅(-6b)2⋅1
Step 7.1.4
Rewrite (2b-1)2 as (2b-1)(2b-1).
a=-2b+1±√(2b-1)(2b-1)-4⋅1⋅(-6b)2⋅1
Step 7.1.5
Expand (2b-1)(2b-1) using the FOIL Method.
Step 7.1.5.1
Apply the distributive property.
a=-2b+1±√2b(2b-1)-1(2b-1)-4⋅1⋅(-6b)2⋅1
Step 7.1.5.2
Apply the distributive property.
a=-2b+1±√2b(2b)+2b⋅-1-1(2b-1)-4⋅1⋅(-6b)2⋅1
Step 7.1.5.3
Apply the distributive property.
a=-2b+1±√2b(2b)+2b⋅-1-1(2b)-1⋅-1-4⋅1⋅(-6b)2⋅1
a=-2b+1±√2b(2b)+2b⋅-1-1(2b)-1⋅-1-4⋅1⋅(-6b)2⋅1
Step 7.1.6
Simplify and combine like terms.
Step 7.1.6.1
Simplify each term.
Step 7.1.6.1.1
Rewrite using the commutative property of multiplication.
a=-2b+1±√2⋅(2b⋅b)+2b⋅-1-1(2b)-1⋅-1-4⋅1⋅(-6b)2⋅1
Step 7.1.6.1.2
Multiply b by b by adding the exponents.
Step 7.1.6.1.2.1
Move b.
a=-2b+1±√2⋅(2(b⋅b))+2b⋅-1-1(2b)-1⋅-1-4⋅1⋅(-6b)2⋅1
Step 7.1.6.1.2.2
Multiply b by b.
a=-2b+1±√2⋅(2b2)+2b⋅-1-1(2b)-1⋅-1-4⋅1⋅(-6b)2⋅1
a=-2b+1±√2⋅(2b2)+2b⋅-1-1(2b)-1⋅-1-4⋅1⋅(-6b)2⋅1
Step 7.1.6.1.3
Multiply 2 by 2.
a=-2b+1±√4b2+2b⋅-1-1(2b)-1⋅-1-4⋅1⋅(-6b)2⋅1
Step 7.1.6.1.4
Multiply -1 by 2.
a=-2b+1±√4b2-2b-1(2b)-1⋅-1-4⋅1⋅(-6b)2⋅1
Step 7.1.6.1.5
Multiply 2 by -1.
a=-2b+1±√4b2-2b-2b-1⋅-1-4⋅1⋅(-6b)2⋅1
Step 7.1.6.1.6
Multiply -1 by -1.
a=-2b+1±√4b2-2b-2b+1-4⋅1⋅(-6b)2⋅1
a=-2b+1±√4b2-2b-2b+1-4⋅1⋅(-6b)2⋅1
Step 7.1.6.2
Subtract 2b from -2b.
a=-2b+1±√4b2-4b+1-4⋅1⋅(-6b)2⋅1
a=-2b+1±√4b2-4b+1-4⋅1⋅(-6b)2⋅1
Step 7.1.7
Multiply -4⋅1⋅-6.
Step 7.1.7.1
Multiply -4 by 1.
a=-2b+1±√4b2-4b+1-4⋅(-6b)2⋅1
Step 7.1.7.2
Multiply -4 by -6.
a=-2b+1±√4b2-4b+1+24b2⋅1
a=-2b+1±√4b2-4b+1+24b2⋅1
Step 7.1.8
Add -4b and 24b.
a=-2b+1±√4b2+20b+12⋅1
a=-2b+1±√4b2+20b+12⋅1
Step 7.2
Multiply 2 by 1.
a=-2b+1±√4b2+20b+12
a=-2b+1±√4b2+20b+12
Step 8
The final answer is the combination of both solutions.
a=-2b-1-√4b2+20b+12
a=-2b-1+√4b2+20b+12