Enter a problem...
Basic Math Examples
-237÷a=11314÷617−237÷a=11314÷617
Step 1
Step 1.1
Simplify -237÷a−237÷a.
Step 1.1.1
Convert 237237 to an improper fraction.
Step 1.1.1.1
A mixed number is an addition of its whole and fractional parts.
-(2+37)÷a=11314÷617−(2+37)÷a=11314÷617
Step 1.1.1.2
Add 22 and 3737.
Step 1.1.1.2.1
To write 22 as a fraction with a common denominator, multiply by 7777.
-(2⋅77+37)÷a=11314÷617−(2⋅77+37)÷a=11314÷617
Step 1.1.1.2.2
Combine 22 and 7777.
-(2⋅77+37)÷a=11314÷617−(2⋅77+37)÷a=11314÷617
Step 1.1.1.2.3
Combine the numerators over the common denominator.
-2⋅7+37÷a=11314÷617−2⋅7+37÷a=11314÷617
Step 1.1.1.2.4
Simplify the numerator.
Step 1.1.1.2.4.1
Multiply 22 by 77.
-14+37÷a=11314÷617−14+37÷a=11314÷617
Step 1.1.1.2.4.2
Add 1414 and 33.
-177÷a=11314÷617−177÷a=11314÷617
-177÷a=11314÷617−177÷a=11314÷617
-177÷a=11314÷617−177÷a=11314÷617
-177÷a=11314÷617−177÷a=11314÷617
Step 1.1.2
Rewrite the division as a fraction.
-177a=11314÷617−177a=11314÷617
Step 1.1.3
Multiply the numerator by the reciprocal of the denominator.
-177⋅1a=11314÷617−177⋅1a=11314÷617
Step 1.1.4
Multiply 1a1a by 177177.
-17a⋅7=11314÷617−17a⋅7=11314÷617
Step 1.1.5
Move 77 to the left of aa.
-177a=11314÷617−177a=11314÷617
-177a=11314÷617−177a=11314÷617
-177a=11314÷617−177a=11314÷617
Step 2
Step 2.1
Simplify 11314÷61711314÷617.
Step 2.1.1
Convert 1131411314 to an improper fraction.
Step 2.1.1.1
A mixed number is an addition of its whole and fractional parts.
-177a=(1+1314)÷617−177a=(1+1314)÷617
Step 2.1.1.2
Add 11 and 13141314.
Step 2.1.1.2.1
Write 11 as a fraction with a common denominator.
-177a=(1414+1314)÷617−177a=(1414+1314)÷617
Step 2.1.1.2.2
Combine the numerators over the common denominator.
-177a=14+1314÷617−177a=14+1314÷617
Step 2.1.1.2.3
Add 1414 and 1313.
-177a=2714÷617−177a=2714÷617
-177a=2714÷617
-177a=2714÷617
Step 2.1.2
To divide by a fraction, multiply by its reciprocal.
-177a=2714⋅176
Step 2.1.3
Cancel the common factor of 3.
Step 2.1.3.1
Factor 3 out of 27.
-177a=3(9)14⋅176
Step 2.1.3.2
Factor 3 out of 6.
-177a=3⋅914⋅173⋅2
Step 2.1.3.3
Cancel the common factor.
-177a=3⋅914⋅173⋅2
Step 2.1.3.4
Rewrite the expression.
-177a=914⋅172
-177a=914⋅172
Step 2.1.4
Multiply 914 by 172.
-177a=9⋅1714⋅2
Step 2.1.5
Multiply.
Step 2.1.5.1
Multiply 9 by 17.
-177a=15314⋅2
Step 2.1.5.2
Multiply 14 by 2.
-177a=15328
-177a=15328
-177a=15328
-177a=15328
Step 3
Multiply the numerator of the first fraction by the denominator of the second fraction. Set this equal to the product of the denominator of the first fraction and the numerator of the second fraction.
-17⋅28=7a⋅153
Step 4
Step 4.1
Rewrite the equation as 7a⋅153=-17⋅28.
7a⋅153=-17⋅28
Step 4.2
Simplify.
Step 4.2.1
Multiply 153 by 7.
1071a=-17⋅28
Step 4.2.2
Multiply -17 by 28.
1071a=-476
1071a=-476
Step 4.3
Divide each term in 1071a=-476 by 1071 and simplify.
Step 4.3.1
Divide each term in 1071a=-476 by 1071.
1071a1071=-4761071
Step 4.3.2
Simplify the left side.
Step 4.3.2.1
Cancel the common factor of 1071.
Step 4.3.2.1.1
Cancel the common factor.
1071a1071=-4761071
Step 4.3.2.1.2
Divide a by 1.
a=-4761071
a=-4761071
a=-4761071
Step 4.3.3
Simplify the right side.
Step 4.3.3.1
Cancel the common factor of -476 and 1071.
Step 4.3.3.1.1
Factor 119 out of -476.
a=119(-4)1071
Step 4.3.3.1.2
Cancel the common factors.
Step 4.3.3.1.2.1
Factor 119 out of 1071.
a=119⋅-4119⋅9
Step 4.3.3.1.2.2
Cancel the common factor.
a=119⋅-4119⋅9
Step 4.3.3.1.2.3
Rewrite the expression.
a=-49
a=-49
a=-49
Step 4.3.3.2
Move the negative in front of the fraction.
a=-49
a=-49
a=-49
a=-49
Step 5
The result can be shown in multiple forms.
Exact Form:
a=-49
Decimal Form:
a=-0.‾4