Enter a problem...
Basic Math Examples
12b2⋅(7b)=3
Step 1
Step 1.1
Multiply 7 by 12.
84b2⋅b=3
Step 1.2
Raise b to the power of 1.
84(b1b2)=3
Step 1.3
Use the power rule aman=am+n to combine exponents.
84b1+2=3
Step 1.4
Add 1 and 2.
84b3=3
84b3=3
Step 2
Step 2.1
Divide each term in 84b3=3 by 84.
84b384=384
Step 2.2
Simplify the left side.
Step 2.2.1
Cancel the common factor of 84.
Step 2.2.1.1
Cancel the common factor.
84b384=384
Step 2.2.1.2
Divide b3 by 1.
b3=384
b3=384
b3=384
Step 2.3
Simplify the right side.
Step 2.3.1
Cancel the common factor of 3 and 84.
Step 2.3.1.1
Factor 3 out of 3.
b3=3(1)84
Step 2.3.1.2
Cancel the common factors.
Step 2.3.1.2.1
Factor 3 out of 84.
b3=3⋅13⋅28
Step 2.3.1.2.2
Cancel the common factor.
b3=3⋅13⋅28
Step 2.3.1.2.3
Rewrite the expression.
b3=128
b3=128
b3=128
b3=128
b3=128
Step 3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
b=3√128
Step 4
Step 4.1
Rewrite 3√128 as 3√13√28.
b=3√13√28
Step 4.2
Any root of 1 is 1.
b=13√28
Step 4.3
Multiply 13√28 by 3√2823√282.
b=13√28⋅3√2823√282
Step 4.4
Combine and simplify the denominator.
Step 4.4.1
Multiply 13√28 by 3√2823√282.
b=3√2823√283√282
Step 4.4.2
Raise 3√28 to the power of 1.
b=3√2823√2813√282
Step 4.4.3
Use the power rule aman=am+n to combine exponents.
b=3√2823√281+2
Step 4.4.4
Add 1 and 2.
b=3√2823√283
Step 4.4.5
Rewrite 3√283 as 28.
Step 4.4.5.1
Use n√ax=axn to rewrite 3√28 as 2813.
b=3√282(2813)3
Step 4.4.5.2
Apply the power rule and multiply exponents, (am)n=amn.
b=3√2822813⋅3
Step 4.4.5.3
Combine 13 and 3.
b=3√2822833
Step 4.4.5.4
Cancel the common factor of 3.
Step 4.4.5.4.1
Cancel the common factor.
b=3√2822833
Step 4.4.5.4.2
Rewrite the expression.
b=3√282281
b=3√282281
Step 4.4.5.5
Evaluate the exponent.
b=3√28228
b=3√28228
b=3√28228
Step 4.5
Simplify the numerator.
Step 4.5.1
Rewrite 3√282 as 3√282.
b=3√28228
Step 4.5.2
Raise 28 to the power of 2.
b=3√78428
Step 4.5.3
Rewrite 784 as 23⋅98.
Step 4.5.3.1
Factor 8 out of 784.
b=3√8(98)28
Step 4.5.3.2
Rewrite 8 as 23.
b=3√23⋅9828
b=3√23⋅9828
Step 4.5.4
Pull terms out from under the radical.
b=23√9828
b=23√9828
Step 4.6
Cancel the common factor of 2 and 28.
Step 4.6.1
Factor 2 out of 23√98.
b=2(3√98)28
Step 4.6.2
Cancel the common factors.
Step 4.6.2.1
Factor 2 out of 28.
b=23√982⋅14
Step 4.6.2.2
Cancel the common factor.
b=23√982⋅14
Step 4.6.2.3
Rewrite the expression.
b=3√9814
b=3√9814
b=3√9814
b=3√9814
Step 5
The result can be shown in multiple forms.
Exact Form:
b=3√9814
Decimal Form:
b=0.32931687…