Enter a problem...
Basic Math Examples
3.5=2374.8⋅b+40⋅b21.35⋅(720⋅b-4326)
Step 1
Rewrite the equation as 2374.8⋅b+40⋅b21.35⋅(720⋅b-4326)=3.5.
2374.8⋅b+40⋅b21.35⋅(720⋅b-4326)=3.5
Step 2
Step 2.1
Factor 0.4b out of 2374.8⋅b+40⋅b2.
Step 2.1.1
Factor 0.4b out of 2374.8⋅b.
0.4b(5937)+40⋅b21.35⋅(720⋅b-4326)=3.5
Step 2.1.2
Factor 0.4b out of 40⋅b2.
0.4b(5937)+0.4b(100⋅b)1.35⋅(720⋅b-4326)=3.5
Step 2.1.3
Factor 0.4b out of 0.4b(5937)+0.4b(100⋅b).
0.4b(5937+100⋅b)1.35⋅(720⋅b-4326)=3.5
0.4b(5937+100b)1.35⋅(720⋅b-4326)=3.5
Step 2.2
Factor 6 out of 720⋅b-4326.
Step 2.2.1
Factor 6 out of 720⋅b.
0.4b(5937+100b)1.35⋅(6(120⋅b)-4326)=3.5
Step 2.2.2
Factor 6 out of -4326.
0.4b(5937+100b)1.35⋅(6(120⋅b)+6(-721))=3.5
Step 2.2.3
Factor 6 out of 6(120⋅b)+6(-721).
0.4b(5937+100b)1.35⋅(6(120⋅b-721))=3.5
0.4b(5937+100b)1.35⋅(6(120b-721))=3.5
Step 2.3
Remove unnecessary parentheses.
0.4b(5937+100b)1.35⋅6(120b-721)=3.5
Step 2.4
Multiply 1.35 by 6.
0.4b(5937+100b)8.1(120b-721)=3.5
Step 2.5
Factor 0.4 out of 0.4b(5937+100b).
0.4(b(5937+100b))8.1(120b-721)=3.5
Step 2.6
Separate fractions.
0.48.1⋅b(5937+100b)120b-721=3.5
Step 2.7
Divide 0.4 by 8.1.
0.04938271b(5937+100b)120b-721=3.5
Step 2.8
Combine 0.04938271 and b(5937+100b)120b-721.
0.04938271(b(5937+100b))120b-721=3.5
Step 2.9
Remove parentheses.
0.04938271b(5937+100b)120b-721=3.5
0.04938271b(5937+100b)120b-721=3.5
Step 3
Step 3.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
120b-721,1
Step 3.2
Remove parentheses.
120b-721,1
Step 3.3
The LCM of one and any expression is the expression.
120b-721
120b-721
Step 4
Step 4.1
Multiply each term in 0.04938271b(5937+100b)120b-721=3.5 by 120b-721.
0.04938271b(5937+100b)120b-721(120b-721)=3.5(120b-721)
Step 4.2
Simplify the left side.
Step 4.2.1
Simplify terms.
Step 4.2.1.1
Cancel the common factor of 120b-721.
Step 4.2.1.1.1
Cancel the common factor.
0.04938271b(5937+100b)120b-721(120b-721)=3.5(120b-721)
Step 4.2.1.1.2
Rewrite the expression.
0.04938271b(5937+100b)=3.5(120b-721)
0.04938271b(5937+100b)=3.5(120b-721)
Step 4.2.1.2
Apply the distributive property.
0.04938271b⋅5937+0.04938271b(100b)=3.5(120b-721)
Step 4.2.1.3
Simplify the expression.
Step 4.2.1.3.1
Multiply 5937 by 0.04938271.
293.18518518b+0.04938271b(100b)=3.5(120b-721)
Step 4.2.1.3.2
Rewrite using the commutative property of multiplication.
293.18518518b+0.04938271⋅100b⋅b=3.5(120b-721)
293.18518518b+0.04938271⋅100b⋅b=3.5(120b-721)
293.18518518b+0.04938271⋅100b⋅b=3.5(120b-721)
Step 4.2.2
Simplify each term.
Step 4.2.2.1
Multiply b by b by adding the exponents.
Step 4.2.2.1.1
Move b.
293.18518518b+0.04938271⋅100(b⋅b)=3.5(120b-721)
Step 4.2.2.1.2
Multiply b by b.
293.18518518b+0.04938271⋅100b2=3.5(120b-721)
293.18518518b+0.04938271⋅100b2=3.5(120b-721)
Step 4.2.2.2
Multiply 0.04938271 by 100.
293.18518518b+4.9382716b2=3.5(120b-721)
293.18518518b+4.9382716b2=3.5(120b-721)
293.18518518b+4.9382716b2=3.5(120b-721)
Step 4.3
Simplify the right side.
Step 4.3.1
Apply the distributive property.
293.18518518b+4.9382716b2=3.5(120b)+3.5⋅-721
Step 4.3.2
Multiply.
Step 4.3.2.1
Multiply 120 by 3.5.
293.18518518b+4.9382716b2=420b+3.5⋅-721
Step 4.3.2.2
Multiply 3.5 by -721.
293.18518518b+4.9382716b2=420b-2523.5
293.18518518b+4.9382716b2=420b-2523.5
293.18518518b+4.9382716b2=420b-2523.5
293.18518518b+4.9382716b2=420b-2523.5
Step 5
Step 5.1
Move all terms containing b to the left side of the equation.
Step 5.1.1
Subtract 420b from both sides of the equation.
293.18518518b+4.9382716b2-420b=-2523.5
Step 5.1.2
Subtract 420b from 293.18518518b.
4.9382716b2-126.81481481b=-2523.5
4.9382716b2-126.81481481b=-2523.5
Step 5.2
Add 2523.5 to both sides of the equation.
4.9382716b2-126.81481481b+2523.5=0
Step 5.3
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 5.4
Substitute the values a=4.9382716, b=-126.81481481, and c=2523.5 into the quadratic formula and solve for b.
126.81481481±√(-126.81481481)2-4⋅(4.9382716⋅2523.5)2⋅4.9382716
Step 5.5
Simplify.
Step 5.5.1
Simplify the numerator.
Step 5.5.1.1
Raise -126.81481481 to the power of 2.
b=126.81481481±√16081.99725651-4⋅4.9382716⋅2523.52⋅4.9382716
Step 5.5.1.2
Multiply -4⋅4.9382716⋅2523.5.
Step 5.5.1.2.1
Multiply -4 by 4.9382716.
b=126.81481481±√16081.99725651-19.75308641⋅2523.52⋅4.9382716
Step 5.5.1.2.2
Multiply -19.75308641 by 2523.5.
b=126.81481481±√16081.99725651-49846.913580242⋅4.9382716
b=126.81481481±√16081.99725651-49846.913580242⋅4.9382716
Step 5.5.1.3
Subtract 49846.91358024 from 16081.99725651.
b=126.81481481±√-33764.916323732⋅4.9382716
Step 5.5.1.4
Rewrite -33764.91632373 as -1(33764.91632373).
b=126.81481481±√-1⋅33764.916323732⋅4.9382716
Step 5.5.1.5
Rewrite √-1(33764.91632373) as √-1⋅√33764.91632373.
b=126.81481481±√-1⋅√33764.916323732⋅4.9382716
Step 5.5.1.6
Rewrite √-1 as i.
b=126.81481481±i√33764.916323732⋅4.9382716
b=126.81481481±i√33764.916323732⋅4.9382716
Step 5.5.2
Multiply 2 by 4.9382716.
b=126.81481481±i√33764.916323739.8765432
Step 5.5.3
Multiply by 1.
b=1(126.81481481±i√33764.91632373)9.8765432
Step 5.5.4
Factor 9.8765432 out of 9.8765432.
b=1(126.81481481±i√33764.91632373)9.8765432(1)
Step 5.5.5
Separate fractions.
b=19.8765432⋅126.81481481±i√33764.916323731
Step 5.5.6
Divide 1 by 9.8765432.
b=0.10125(126.81481481±i√33764.916323731)
Step 5.5.7
Divide 126.81481481±i√33764.91632373 by 1.
b=0.10125(126.81481481±i√33764.91632373)
b=0.10125(126.81481481±i√33764.91632373)
Step 5.6
The final answer is the combination of both solutions.
b=12.84+18.60492273i,12.84-18.60492273i
b=12.84+18.60492273i,12.84-18.60492273i