Basic Math Examples

Solve for b a^2+b^2=c^2
a2+b2=c2a2+b2=c2
Step 1
Subtract a2a2 from both sides of the equation.
b2=c2-a2b2=c2a2
Step 2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
b=±c2-a2b=±c2a2
Step 3
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2b2=(a+b)(ab) where a=ca=c and b=ab=a.
b=±(c+a)(c-a)b=±(c+a)(ca)
Step 4
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 4.1
First, use the positive value of the ±± to find the first solution.
b=(c+a)(c-a)b=(c+a)(ca)
Step 4.2
Next, use the negative value of the ±± to find the second solution.
b=-(c+a)(c-a)b=(c+a)(ca)
Step 4.3
The complete solution is the result of both the positive and negative portions of the solution.
b=(c+a)(c-a)b=(c+a)(ca)
b=-(c+a)(c-a)b=(c+a)(ca)
b=(c+a)(c-a)b=(c+a)(ca)
b=-(c+a)(c-a)b=(c+a)(ca)
 [x2  12  π  xdx ]  x2  12  π  xdx