Enter a problem...
Basic Math Examples
a2+b2=c2a2+b2=c2
Step 1
Subtract a2a2 from both sides of the equation.
b2=c2-a2b2=c2−a2
Step 2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
b=±√c2-a2b=±√c2−a2
Step 3
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=ca=c and b=ab=a.
b=±√(c+a)(c-a)b=±√(c+a)(c−a)
Step 4
Step 4.1
First, use the positive value of the ±± to find the first solution.
b=√(c+a)(c-a)b=√(c+a)(c−a)
Step 4.2
Next, use the negative value of the ±± to find the second solution.
b=-√(c+a)(c-a)b=−√(c+a)(c−a)
Step 4.3
The complete solution is the result of both the positive and negative portions of the solution.
b=√(c+a)(c-a)b=√(c+a)(c−a)
b=-√(c+a)(c-a)b=−√(c+a)(c−a)
b=√(c+a)(c-a)b=√(c+a)(c−a)
b=-√(c+a)(c-a)b=−√(c+a)(c−a)