Enter a problem...
Basic Math Examples
6b-1=97
Step 1
Multiply the numerator of the first fraction by the denominator of the second fraction. Set this equal to the product of the denominator of the first fraction and the numerator of the second fraction.
6⋅7=(b-1)⋅9
Step 2
Step 2.1
Rewrite the equation as (b-1)⋅9=6⋅7.
(b-1)⋅9=6⋅7
Step 2.2
Multiply 6 by 7.
(b-1)⋅9=42
Step 2.3
Divide each term in (b-1)⋅9=42 by 9 and simplify.
Step 2.3.1
Divide each term in (b-1)⋅9=42 by 9.
(b-1)⋅99=429
Step 2.3.2
Simplify the left side.
Step 2.3.2.1
Cancel the common factor of 9.
Step 2.3.2.1.1
Cancel the common factor.
(b-1)⋅99=429
Step 2.3.2.1.2
Divide b-1 by 1.
b-1=429
b-1=429
b-1=429
Step 2.3.3
Simplify the right side.
Step 2.3.3.1
Cancel the common factor of 42 and 9.
Step 2.3.3.1.1
Factor 3 out of 42.
b-1=3(14)9
Step 2.3.3.1.2
Cancel the common factors.
Step 2.3.3.1.2.1
Factor 3 out of 9.
b-1=3⋅143⋅3
Step 2.3.3.1.2.2
Cancel the common factor.
b-1=3⋅143⋅3
Step 2.3.3.1.2.3
Rewrite the expression.
b-1=143
b-1=143
b-1=143
b-1=143
b-1=143
Step 2.4
Move all terms not containing b to the right side of the equation.
Step 2.4.1
Add 1 to both sides of the equation.
b=143+1
Step 2.4.2
Write 1 as a fraction with a common denominator.
b=143+33
Step 2.4.3
Combine the numerators over the common denominator.
b=14+33
Step 2.4.4
Add 14 and 3.
b=173
b=173
b=173
Step 3
The result can be shown in multiple forms.
Exact Form:
b=173
Decimal Form:
b=5.‾6
Mixed Number Form:
b=523