Enter a problem...
Basic Math Examples
32b+(b+45)+90+(2b-90)+b=54032b+(b+45)+90+(2b−90)+b=540
Step 1
Step 1.1
Combine the opposite terms in 32b+b+45+90+2b-90+b32b+b+45+90+2b−90+b.
Step 1.1.1
Subtract 9090 from 9090.
32b+b+45+2b+0+b=54032b+b+45+2b+0+b=540
Step 1.1.2
Add 32b+b+45+2b32b+b+45+2b and 00.
32b+b+45+2b+b=54032b+b+45+2b+b=540
32b+b+45+2b+b=54032b+b+45+2b+b=540
Step 1.2
Combine 3232 and bb.
3b2+b+45+2b+b=5403b2+b+45+2b+b=540
Step 1.3
To write bb as a fraction with a common denominator, multiply by 2222.
3b2+b⋅22+45+2b+b=5403b2+b⋅22+45+2b+b=540
Step 1.4
Combine bb and 2222.
3b2+b⋅22+45+2b+b=5403b2+b⋅22+45+2b+b=540
Step 1.5
Combine the numerators over the common denominator.
3b+b⋅22+45+2b+b=5403b+b⋅22+45+2b+b=540
Step 1.6
Add 3b3b and b⋅2b⋅2.
Step 1.6.1
Reorder bb and 22.
3b+2⋅b2+45+2b+b=5403b+2⋅b2+45+2b+b=540
Step 1.6.2
Add 3b3b and 2⋅b2⋅b.
5b2+45+2b+b=5405b2+45+2b+b=540
5b2+45+2b+b=5405b2+45+2b+b=540
Step 1.7
To write 2b2b as a fraction with a common denominator, multiply by 2222.
5b2+2b⋅22+45+b=5405b2+2b⋅22+45+b=540
Step 1.8
Simplify terms.
Step 1.8.1
Combine 2b2b and 2222.
5b2+2b⋅22+45+b=5405b2+2b⋅22+45+b=540
Step 1.8.2
Combine the numerators over the common denominator.
5b+2b⋅22+45+b=5405b+2b⋅22+45+b=540
5b+2b⋅22+45+b=5405b+2b⋅22+45+b=540
Step 1.9
Simplify each term.
Step 1.9.1
Simplify the numerator.
Step 1.9.1.1
Factor bb out of 5b+2b⋅25b+2b⋅2.
Step 1.9.1.1.1
Factor bb out of 5b5b.
b⋅5+2b⋅22+45+b=540b⋅5+2b⋅22+45+b=540
Step 1.9.1.1.2
Factor bb out of 2b⋅22b⋅2.
b⋅5+b(2⋅2)2+45+b=540b⋅5+b(2⋅2)2+45+b=540
Step 1.9.1.1.3
Factor b out of b⋅5+b(2⋅2).
b(5+2⋅2)2+45+b=540
b(5+2⋅2)2+45+b=540
Step 1.9.1.2
Multiply 2 by 2.
b(5+4)2+45+b=540
Step 1.9.1.3
Add 5 and 4.
b⋅92+45+b=540
b⋅92+45+b=540
Step 1.9.2
Move 9 to the left of b.
9b2+45+b=540
9b2+45+b=540
Step 1.10
To write b as a fraction with a common denominator, multiply by 22.
9b2+b⋅22+45=540
Step 1.11
Combine b and 22.
9b2+b⋅22+45=540
Step 1.12
Combine the numerators over the common denominator.
9b+b⋅22+45=540
Step 1.13
Add 9b and b⋅2.
Step 1.13.1
Reorder b and 2.
9b+2⋅b2+45=540
Step 1.13.2
Add 9b and 2⋅b.
11b2+45=540
11b2+45=540
11b2+45=540
Step 2
Step 2.1
Subtract 45 from both sides of the equation.
11b2=540-45
Step 2.2
Subtract 45 from 540.
11b2=495
11b2=495
Step 3
Multiply both sides of the equation by 211.
211⋅11b2=211⋅495
Step 4
Step 4.1
Simplify the left side.
Step 4.1.1
Simplify 211⋅11b2.
Step 4.1.1.1
Cancel the common factor of 2.
Step 4.1.1.1.1
Cancel the common factor.
211⋅11b2=211⋅495
Step 4.1.1.1.2
Rewrite the expression.
111(11b)=211⋅495
111(11b)=211⋅495
Step 4.1.1.2
Cancel the common factor of 11.
Step 4.1.1.2.1
Factor 11 out of 11b.
111(11(b))=211⋅495
Step 4.1.1.2.2
Cancel the common factor.
111(11b)=211⋅495
Step 4.1.1.2.3
Rewrite the expression.
b=211⋅495
b=211⋅495
b=211⋅495
b=211⋅495
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify 211⋅495.
Step 4.2.1.1
Cancel the common factor of 11.
Step 4.2.1.1.1
Factor 11 out of 495.
b=211⋅(11(45))
Step 4.2.1.1.2
Cancel the common factor.
b=211⋅(11⋅45)
Step 4.2.1.1.3
Rewrite the expression.
b=2⋅45
b=2⋅45
Step 4.2.1.2
Multiply 2 by 45.
b=90
b=90
b=90
b=90