Basic Math Examples

Simplify ( square root of 82)/(9- square root of 82)
829-8282982
Step 1
Multiply 829-8282982 by 9+829+829+829+82.
829-829+829+82829829+829+82
Step 2
Simplify terms.
Tap for more steps...
Step 2.1
Multiply 829-8282982 by 9+829+829+829+82.
82(9+82)(9-82)(9+82)82(9+82)(982)(9+82)
Step 2.2
Expand the denominator using the FOIL method.
82(9+82)81+982-982-82282(9+82)81+982982822
Step 2.3
Simplify.
82(9+82)-182(9+82)1
Step 2.4
Simplify the expression.
Tap for more steps...
Step 2.4.1
Move the negative one from the denominator of 82(9+82)-182(9+82)1.
-1(82(9+82))1(82(9+82))
Step 2.4.2
Rewrite -1(82(9+82))1(82(9+82)) as -(82(9+82))(82(9+82)).
-(82(9+82))(82(9+82))
-(82(9+82))(82(9+82))
Step 2.5
Apply the distributive property.
-(829+8282)(829+8282)
Step 2.6
Move 99 to the left of 8282.
-(982+8282)(982+8282)
Step 2.7
Combine using the product rule for radicals.
-(982+8282)(982+8282)
-(982+8282)(982+8282)
Step 3
Simplify each term.
Tap for more steps...
Step 3.1
Multiply 8282 by 8282.
-(982+6724)(982+6724)
Step 3.2
Rewrite 67246724 as 822822.
-(982+822)(982+822)
Step 3.3
Pull terms out from under the radical, assuming positive real numbers.
-(982+82)
-(982+82)
Step 4
Simplify by multiplying through.
Tap for more steps...
Step 4.1
Apply the distributive property.
-(982)-182
Step 4.2
Multiply.
Tap for more steps...
Step 4.2.1
Multiply 9 by -1.
-982-182
Step 4.2.2
Multiply -1 by 82.
-982-82
-982-82
-982-82
Step 5
The result can be shown in multiple forms.
Exact Form:
-982-82
Decimal Form:
-163.49846624
 [x2  12  π  xdx ]