Basic Math Examples

Solve for s square root of s^2 = square root of 1040
s2=1040s2=1040
Step 1
To remove the radical on the left side of the equation, square both sides of the equation.
s22=10402s22=10402
Step 2
Simplify each side of the equation.
Tap for more steps...
Step 2.1
Use nax=axnnax=axn to rewrite s2s2 as s22s22.
(s22)2=10402(s22)2=10402
Step 2.2
Divide 22 by 22.
(s1)2=10402(s1)2=10402
Step 2.3
Simplify the left side.
Tap for more steps...
Step 2.3.1
Multiply the exponents in (s1)2(s1)2.
Tap for more steps...
Step 2.3.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
s12=10402s12=10402
Step 2.3.1.2
Multiply 22 by 11.
s2=10402s2=10402
s2=10402s2=10402
s2=10402s2=10402
Step 2.4
Simplify the right side.
Tap for more steps...
Step 2.4.1
Simplify 1040210402.
Tap for more steps...
Step 2.4.1.1
Rewrite 10401040 as 42654265.
Tap for more steps...
Step 2.4.1.1.1
Factor 1616 out of 10401040.
s2=16(65)2s2=16(65)2
Step 2.4.1.1.2
Rewrite 1616 as 4242.
s2=42652s2=42652
s2=42652s2=42652
Step 2.4.1.2
Pull terms out from under the radical.
s2=(465)2s2=(465)2
Step 2.4.1.3
Simplify the expression.
Tap for more steps...
Step 2.4.1.3.1
Apply the product rule to 465465.
s2=42652s2=42652
Step 2.4.1.3.2
Raise 44 to the power of 22.
s2=16652s2=16652
s2=16652s2=16652
Step 2.4.1.4
Rewrite 652652 as 6565.
Tap for more steps...
Step 2.4.1.4.1
Use nax=axnnax=axn to rewrite 6565 as 65126512.
s2=16(6512)2s2=16(6512)2
Step 2.4.1.4.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
s2=1665122s2=1665122
Step 2.4.1.4.3
Combine 1212 and 22.
s2=166522s2=166522
Step 2.4.1.4.4
Cancel the common factor of 22.
Tap for more steps...
Step 2.4.1.4.4.1
Cancel the common factor.
s2=166522
Step 2.4.1.4.4.2
Rewrite the expression.
s2=16651
s2=16651
Step 2.4.1.4.5
Evaluate the exponent.
s2=1665
s2=1665
Step 2.4.1.5
Multiply 16 by 65.
s2=1040
s2=1040
s2=1040
s2=1040
Step 3
Solve for s.
Tap for more steps...
Step 3.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
s=±1040
Step 3.2
Simplify ±1040.
Tap for more steps...
Step 3.2.1
Rewrite 1040 as 4265.
Tap for more steps...
Step 3.2.1.1
Factor 16 out of 1040.
s=±16(65)
Step 3.2.1.2
Rewrite 16 as 42.
s=±4265
s=±4265
Step 3.2.2
Pull terms out from under the radical.
s=±465
s=±465
Step 3.3
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 3.3.1
First, use the positive value of the ± to find the first solution.
s=465
Step 3.3.2
Next, use the negative value of the ± to find the second solution.
s=-465
Step 3.3.3
The complete solution is the result of both the positive and negative portions of the solution.
s=465,-465
s=465,-465
s=465,-465
Step 4
The result can be shown in multiple forms.
Exact Form:
s=465,-465
Decimal Form:
s=32.24903099,-32.24903099
 [x2  12  π  xdx ]