Enter a problem...
Basic Math Examples
√s2=√1040√s2=√1040
Step 1
To remove the radical on the left side of the equation, square both sides of the equation.
√s22=√10402√s22=√10402
Step 2
Step 2.1
Use n√ax=axnn√ax=axn to rewrite √s2√s2 as s22s22.
(s22)2=√10402(s22)2=√10402
Step 2.2
Divide 22 by 22.
(s1)2=√10402(s1)2=√10402
Step 2.3
Simplify the left side.
Step 2.3.1
Multiply the exponents in (s1)2(s1)2.
Step 2.3.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
s1⋅2=√10402s1⋅2=√10402
Step 2.3.1.2
Multiply 22 by 11.
s2=√10402s2=√10402
s2=√10402s2=√10402
s2=√10402s2=√10402
Step 2.4
Simplify the right side.
Step 2.4.1
Simplify √10402√10402.
Step 2.4.1.1
Rewrite 10401040 as 42⋅6542⋅65.
Step 2.4.1.1.1
Factor 1616 out of 10401040.
s2=√16(65)2s2=√16(65)2
Step 2.4.1.1.2
Rewrite 1616 as 4242.
s2=√42⋅652s2=√42⋅652
s2=√42⋅652s2=√42⋅652
Step 2.4.1.2
Pull terms out from under the radical.
s2=(4√65)2s2=(4√65)2
Step 2.4.1.3
Simplify the expression.
Step 2.4.1.3.1
Apply the product rule to 4√654√65.
s2=42√652s2=42√652
Step 2.4.1.3.2
Raise 44 to the power of 22.
s2=16√652s2=16√652
s2=16√652s2=16√652
Step 2.4.1.4
Rewrite √652√652 as 6565.
Step 2.4.1.4.1
Use n√ax=axnn√ax=axn to rewrite √65√65 as 65126512.
s2=16(6512)2s2=16(6512)2
Step 2.4.1.4.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
s2=16⋅6512⋅2s2=16⋅6512⋅2
Step 2.4.1.4.3
Combine 1212 and 22.
s2=16⋅6522s2=16⋅6522
Step 2.4.1.4.4
Cancel the common factor of 22.
Step 2.4.1.4.4.1
Cancel the common factor.
s2=16⋅6522
Step 2.4.1.4.4.2
Rewrite the expression.
s2=16⋅651
s2=16⋅651
Step 2.4.1.4.5
Evaluate the exponent.
s2=16⋅65
s2=16⋅65
Step 2.4.1.5
Multiply 16 by 65.
s2=1040
s2=1040
s2=1040
s2=1040
Step 3
Step 3.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
s=±√1040
Step 3.2
Simplify ±√1040.
Step 3.2.1
Rewrite 1040 as 42⋅65.
Step 3.2.1.1
Factor 16 out of 1040.
s=±√16(65)
Step 3.2.1.2
Rewrite 16 as 42.
s=±√42⋅65
s=±√42⋅65
Step 3.2.2
Pull terms out from under the radical.
s=±4√65
s=±4√65
Step 3.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 3.3.1
First, use the positive value of the ± to find the first solution.
s=4√65
Step 3.3.2
Next, use the negative value of the ± to find the second solution.
s=-4√65
Step 3.3.3
The complete solution is the result of both the positive and negative portions of the solution.
s=4√65,-4√65
s=4√65,-4√65
s=4√65,-4√65
Step 4
The result can be shown in multiple forms.
Exact Form:
s=4√65,-4√65
Decimal Form:
s=32.24903099…,-32.24903099…