Enter a problem...
Basic Math Examples
Step 1
Rewrite the equation as .
Step 2
Multiply both sides of the equation by .
Step 3
Step 3.1
Simplify .
Step 3.1.1
Multiply by by adding the exponents.
Step 3.1.1.1
Move .
Step 3.1.1.2
Multiply by .
Step 3.1.2
Apply the distributive property.
Step 3.1.3
Apply the distributive property.
Step 3.1.4
Apply the distributive property.
Step 3.1.5
Apply the distributive property.
Step 3.1.6
Multiply by by adding the exponents.
Step 3.1.6.1
Move .
Step 3.1.6.2
Multiply by .
Step 3.1.7
Apply the distributive property.
Step 3.1.8
Multiply .
Step 3.1.8.1
Combine and .
Step 3.1.8.2
Combine and .
Step 3.1.8.3
Combine and .
Step 3.1.8.4
Combine and .
Step 3.1.9
Multiply .
Step 3.1.9.1
Combine and .
Step 3.1.9.2
Combine and .
Step 3.1.9.3
Combine and .
Step 3.1.9.4
Combine and .
Step 3.1.9.5
Combine and .
Step 3.1.10
Remove parentheses.
Step 3.1.11
Simplify terms.
Step 3.1.11.1
Apply the distributive property.
Step 3.1.11.2
Cancel the common factor of .
Step 3.1.11.2.1
Cancel the common factor.
Step 3.1.11.2.2
Rewrite the expression.
Step 3.1.11.3
Cancel the common factor of .
Step 3.1.11.3.1
Cancel the common factor.
Step 3.1.11.3.2
Rewrite the expression.
Step 4
Subtract from both sides of the equation.
Step 5
Use the quadratic formula to find the solutions.
Step 6
Substitute the values , , and into the quadratic formula and solve for .
Step 7
Step 7.1
Simplify the numerator.
Step 7.1.1
Use the power rule to distribute the exponent.
Step 7.1.1.1
Apply the product rule to .
Step 7.1.1.2
Apply the product rule to .
Step 7.1.1.3
Apply the product rule to .
Step 7.1.2
Multiply the exponents in .
Step 7.1.2.1
Apply the power rule and multiply exponents, .
Step 7.1.2.2
Multiply by .
Step 7.1.3
Multiply by .
Step 7.1.4
Factor out of .
Step 7.1.4.1
Factor out of .
Step 7.1.4.2
Factor out of .
Step 7.1.4.3
Factor out of .
Step 7.1.5
Rewrite as .
Step 7.1.5.1
Move .
Step 7.1.5.2
Reorder and .
Step 7.1.5.3
Add parentheses.
Step 7.1.5.4
Add parentheses.
Step 7.1.6
Pull terms out from under the radical.
Step 7.2
Simplify .
Step 8
The final answer is the combination of both solutions.