Enter a problem...
Basic Math Examples
d=pcp+cd=pcp+c
Step 1
Rewrite the equation as pcp+c=dpcp+c=d.
pcp+c=dpcp+c=d
Step 2
Step 2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
p+c,1p+c,1
Step 2.2
Remove parentheses.
p+c,1p+c,1
Step 2.3
The LCM of one and any expression is the expression.
p+cp+c
p+cp+c
Step 3
Step 3.1
Multiply each term in pcp+c=dpcp+c=d by p+cp+c.
pcp+c(p+c)=d(p+c)pcp+c(p+c)=d(p+c)
Step 3.2
Simplify the left side.
Step 3.2.1
Cancel the common factor of p+cp+c.
Step 3.2.1.1
Cancel the common factor.
pcp+c(p+c)=d(p+c)
Step 3.2.1.2
Rewrite the expression.
pc=d(p+c)
pc=d(p+c)
pc=d(p+c)
Step 3.3
Simplify the right side.
Step 3.3.1
Apply the distributive property.
pc=dp+dc
pc=dp+dc
pc=dp+dc
Step 4
Step 4.1
Subtract dp from both sides of the equation.
pc-dp=dc
Step 4.2
Factor p out of pc-dp.
Step 4.2.1
Factor p out of pc.
p(c)-dp=dc
Step 4.2.2
Factor p out of -dp.
p(c)+p(-d)=dc
Step 4.2.3
Factor p out of p(c)+p(-d).
p(c-d)=dc
p(c-d)=dc
Step 4.3
Divide each term in p(c-d)=dc by c-d and simplify.
Step 4.3.1
Divide each term in p(c-d)=dc by c-d.
p(c-d)c-d=dcc-d
Step 4.3.2
Simplify the left side.
Step 4.3.2.1
Cancel the common factor of c-d.
Step 4.3.2.1.1
Cancel the common factor.
p(c-d)c-d=dcc-d
Step 4.3.2.1.2
Divide p by 1.
p=dcc-d
p=dcc-d
p=dcc-d
p=dcc-d
p=dcc-d