Basic Math Examples

Solve for Q c=10+15Q-5Q^2+(Qs)/3
c=10+15Q-5Q2+Qs3
Step 1
Rewrite the equation as 10+15Q-5Q2+Qs3=c.
10+15Q-5Q2+Qs3=c
Step 2
Subtract c from both sides of the equation.
10+15Q-5Q2+Qs3-c=0
Step 3
Multiply through by the least common denominator 3, then simplify.
Tap for more steps...
Step 3.1
Apply the distributive property.
310+3(15Q)+3(-5Q2)+3(Qs3)+3(-c)=0
Step 3.2
Simplify.
Tap for more steps...
Step 3.2.1
Multiply 3 by 10.
30+3(15Q)+3(-5Q2)+3(Qs3)+3(-c)=0
Step 3.2.2
Multiply 15 by 3.
30+45Q+3(-5Q2)+3(Qs3)+3(-c)=0
Step 3.2.3
Multiply -5 by 3.
30+45Q-15Q2+3(Qs3)+3(-c)=0
Step 3.2.4
Cancel the common factor of 3.
Tap for more steps...
Step 3.2.4.1
Cancel the common factor.
30+45Q-15Q2+3(Qs3)+3(-c)=0
Step 3.2.4.2
Rewrite the expression.
30+45Q-15Q2+Qs+3(-c)=0
30+45Q-15Q2+Qs+3(-c)=0
Step 3.2.5
Multiply -1 by 3.
30+45Q-15Q2+Qs-3c=0
30+45Q-15Q2+Qs-3c=0
Step 3.3
Reorder Q and s.
30+45Q-15Q2+sQ-3c=0
Step 3.4
Move 30.
45Q-15Q2+sQ-3c+30=0
Step 3.5
Move 45Q.
-15Q2+sQ-3c+45Q+30=0
Step 3.6
Reorder -15Q2 and sQ.
sQ-15Q2-3c+45Q+30=0
sQ-15Q2-3c+45Q+30=0
Step 4
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 5
Substitute the values a=-15, b=s+45, and c=-3c+30 into the quadratic formula and solve for Q.
-(s+45)±(s+45)2-4(-15(-3c+30))2-15
Step 6
Simplify.
Tap for more steps...
Step 6.1
Simplify the numerator.
Tap for more steps...
Step 6.1.1
Apply the distributive property.
Q=-s-145±(s+45)2-4-15(-3c+30)2-15
Step 6.1.2
Multiply -1 by 45.
Q=-s-45±(s+45)2-4-15(-3c+30)2-15
Step 6.1.3
Rewrite (s+45)2 as (s+45)(s+45).
Q=-s-45±(s+45)(s+45)-4-15(-3c+30)2-15
Step 6.1.4
Expand (s+45)(s+45) using the FOIL Method.
Tap for more steps...
Step 6.1.4.1
Apply the distributive property.
Q=-s-45±s(s+45)+45(s+45)-4-15(-3c+30)2-15
Step 6.1.4.2
Apply the distributive property.
Q=-s-45±ss+s45+45(s+45)-4-15(-3c+30)2-15
Step 6.1.4.3
Apply the distributive property.
Q=-s-45±ss+s45+45s+4545-4-15(-3c+30)2-15
Q=-s-45±ss+s45+45s+4545-4-15(-3c+30)2-15
Step 6.1.5
Simplify and combine like terms.
Tap for more steps...
Step 6.1.5.1
Simplify each term.
Tap for more steps...
Step 6.1.5.1.1
Multiply s by s.
Q=-s-45±s2+s45+45s+4545-4-15(-3c+30)2-15
Step 6.1.5.1.2
Move 45 to the left of s.
Q=-s-45±s2+45s+45s+4545-4-15(-3c+30)2-15
Step 6.1.5.1.3
Multiply 45 by 45.
Q=-s-45±s2+45s+45s+2025-4-15(-3c+30)2-15
Q=-s-45±s2+45s+45s+2025-4-15(-3c+30)2-15
Step 6.1.5.2
Add 45s and 45s.
Q=-s-45±s2+90s+2025-4-15(-3c+30)2-15
Q=-s-45±s2+90s+2025-4-15(-3c+30)2-15
Step 6.1.6
Multiply -4 by -15.
Q=-s-45±s2+90s+2025+60(-3c+30)2-15
Step 6.1.7
Apply the distributive property.
Q=-s-45±s2+90s+2025+60(-3c)+60302-15
Step 6.1.8
Multiply -3 by 60.
Q=-s-45±s2+90s+2025-180c+60302-15
Step 6.1.9
Multiply 60 by 30.
Q=-s-45±s2+90s+2025-180c+18002-15
Step 6.1.10
Add 2025 and 1800.
Q=-s-45±s2+90s-180c+38252-15
Q=-s-45±s2+90s-180c+38252-15
Step 6.2
Multiply 2 by -15.
Q=-s-45±s2+90s-180c+3825-30
Step 6.3
Simplify -s-45±s2+90s-180c+3825-30.
Q=s+45±s2+90s-180c+382530
Q=s+45±s2+90s-180c+382530
Step 7
The final answer is the combination of both solutions.
Q=s+45+s2+90s-180c+382530
Q=s+45-s2+90s-180c+382530
 [x2  12  π  xdx ]