Enter a problem...
Basic Math Examples
1381.02=1250(1+r12)1.33⋅12
Step 1
Rewrite the equation as 1250(1+r12)1.33⋅12=1381.02.
1250(1+r12)1.33⋅12=1381.02
Step 2
Multiply 1.33 by 12.
1250(1+r12)15.96=1381.02
Step 3
Step 3.1
Divide each term in 1250(1+r12)15.96=1381.02 by 1250.
1250(1+r12)15.961250=1381.021250
Step 3.2
Simplify the left side.
Step 3.2.1
Cancel the common factor of 1250.
Step 3.2.1.1
Cancel the common factor.
1250(1+r12)15.961250=1381.021250
Step 3.2.1.2
Divide (1+r12)15.96 by 1.
(1+r12)15.96=1381.021250
(1+r12)15.96=1381.021250
(1+r12)15.96=1381.021250
Step 3.3
Simplify the right side.
Step 3.3.1
Divide 1381.02 by 1250.
(1+r12)15.96=1.104816
(1+r12)15.96=1.104816
(1+r12)15.96=1.104816
Step 4
Step 4.1
Convert the decimal number to a fraction by placing the decimal number over a power of ten. Since there are 2 numbers to the right of the decimal point, place the decimal number over 102 (100). Next, add the whole number to the left of the decimal.
(1+r12)1596100=1.104816
Step 4.2
Reduce the fractional part of the mixed number.
(1+r12)152425=1.104816
Step 4.3
Convert 152425 to an improper fraction.
Step 4.3.1
A mixed number is an addition of its whole and fractional parts.
(1+r12)15+2425=1.104816
Step 4.3.2
Add 15 and 2425.
Step 4.3.2.1
To write 15 as a fraction with a common denominator, multiply by 2525.
(1+r12)15⋅2525+2425=1.104816
Step 4.3.2.2
Combine 15 and 2525.
(1+r12)15⋅2525+2425=1.104816
Step 4.3.2.3
Combine the numerators over the common denominator.
(1+r12)15⋅25+2425=1.104816
Step 4.3.2.4
Simplify the numerator.
Step 4.3.2.4.1
Multiply 15 by 25.
(1+r12)375+2425=1.104816
Step 4.3.2.4.2
Add 375 and 24.
(1+r12)39925=1.104816
(1+r12)39925=1.104816
(1+r12)39925=1.104816
(1+r12)39925=1.104816
(1+r12)39925=1.104816
Step 5
Raise each side of the equation to the power of 115.96 to eliminate the fractional exponent on the left side.
((1+r12)39925)115.96=1.104816115.96
Step 6
Step 6.1
Simplify the left side.
Step 6.1.1
Simplify ((1+r12)39925)115.96.
Step 6.1.1.1
Multiply the exponents in ((1+r12)39925)115.96.
Step 6.1.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
(1+r12)39925⋅115.96=1.104816115.96
Step 6.1.1.1.2
Cancel the common factor of 15.96.
Step 6.1.1.1.2.1
Factor 15.96 out of 399.
(1+r12)15.96(25)25⋅115.96=1.104816115.96
Step 6.1.1.1.2.2
Cancel the common factor.
(1+r12)15.96⋅2525⋅115.96=1.104816115.96
Step 6.1.1.1.2.3
Rewrite the expression.
(1+r12)2525=1.104816115.96
(1+r12)2525=1.104816115.96
Step 6.1.1.1.3
Divide 25 by 25.
(1+r12)1=1.104816115.96
(1+r12)1=1.104816115.96
Step 6.1.1.2
Simplify.
1+r12=1.104816115.96
1+r12=1.104816115.96
1+r12=1.104816115.96
Step 6.2
Simplify the right side.
Step 6.2.1
Simplify 1.104816115.96.
Step 6.2.1.1
Divide 1 by 15.96.
1+r12=1.1048160.06265664
Step 6.2.1.2
Raise 1.104816 to the power of 0.06265664.
1+r12=1.00626508
1+r12=1.00626508
1+r12=1.00626508
1+r12=1.00626508
Step 7
Step 7.1
Move all terms not containing r to the right side of the equation.
Step 7.1.1
Subtract 1 from both sides of the equation.
r12=1.00626508-1
Step 7.1.2
Subtract 1 from 1.00626508.
r12=0.00626508
r12=0.00626508
Step 7.2
Multiply both sides of the equation by 12.
12r12=12⋅0.00626508
Step 7.3
Simplify both sides of the equation.
Step 7.3.1
Simplify the left side.
Step 7.3.1.1
Cancel the common factor of 12.
Step 7.3.1.1.1
Cancel the common factor.
12r12=12⋅0.00626508
Step 7.3.1.1.2
Rewrite the expression.
r=12⋅0.00626508
r=12⋅0.00626508
r=12⋅0.00626508
Step 7.3.2
Simplify the right side.
Step 7.3.2.1
Multiply 12 by 0.00626508.
r=0.07518099
r=0.07518099
r=0.07518099
r=0.07518099