Enter a problem...
Basic Math Examples
8400=5000(1+r4)328400=5000(1+r4)32
Step 1
Rewrite the equation as 5000(1+r4)32=8400.
5000(1+r4)32=8400
Step 2
Step 2.1
Divide each term in 5000(1+r4)32=8400 by 5000.
5000(1+r4)325000=84005000
Step 2.2
Simplify the left side.
Step 2.2.1
Cancel the common factor of 5000.
Step 2.2.1.1
Cancel the common factor.
5000(1+r4)325000=84005000
Step 2.2.1.2
Divide (1+r4)32 by 1.
(1+r4)32=84005000
(1+r4)32=84005000
(1+r4)32=84005000
Step 2.3
Simplify the right side.
Step 2.3.1
Cancel the common factor of 8400 and 5000.
Step 2.3.1.1
Factor 200 out of 8400.
(1+r4)32=200(42)5000
Step 2.3.1.2
Cancel the common factors.
Step 2.3.1.2.1
Factor 200 out of 5000.
(1+r4)32=200⋅42200⋅25
Step 2.3.1.2.2
Cancel the common factor.
(1+r4)32=200⋅42200⋅25
Step 2.3.1.2.3
Rewrite the expression.
(1+r4)32=4225
(1+r4)32=4225
(1+r4)32=4225
(1+r4)32=4225
(1+r4)32=4225
Step 3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
1+r4=±32√4225
Step 4
Step 4.1
Rewrite 32√4225 as 32√4232√25.
1+r4=±32√4232√25
Step 4.2
Simplify the denominator.
Step 4.2.1
Rewrite 25 as 52.
1+r4=±32√4232√52
Step 4.2.2
Rewrite 32√52 as 16√√52.
1+r4=±32√4216√√52
Step 4.2.3
Pull terms out from under the radical, assuming positive real numbers.
1+r4=±32√4216√5
1+r4=±32√4216√5
1+r4=±32√4216√5
Step 5
Step 5.1
First, use the positive value of the ± to find the first solution.
1+r4=32√4216√5
Step 5.2
Subtract 1 from both sides of the equation.
r4=32√4216√5-1
Step 5.3
Multiply both sides of the equation by 4.
4r4=4(32√4216√5-1)
Step 5.4
Simplify both sides of the equation.
Step 5.4.1
Simplify the left side.
Step 5.4.1.1
Cancel the common factor of 4.
Step 5.4.1.1.1
Cancel the common factor.
4r4=4(32√4216√5-1)
Step 5.4.1.1.2
Rewrite the expression.
r=4(32√4216√5-1)
r=4(32√4216√5-1)
r=4(32√4216√5-1)
Step 5.4.2
Simplify the right side.
Step 5.4.2.1
Simplify 4(32√4216√5-1).
Step 5.4.2.1.1
Apply the distributive property.
r=432√4216√5+4⋅-1
Step 5.4.2.1.2
Combine 4 and 32√4216√5.
r=432√4216√5+4⋅-1
Step 5.4.2.1.3
Multiply 4 by -1.
r=432√4216√5-4
r=432√4216√5-4
r=432√4216√5-4
r=432√4216√5-4
Step 5.5
Next, use the negative value of the ± to find the second solution.
1+r4=-32√4216√5
Step 5.6
Subtract 1 from both sides of the equation.
r4=-32√4216√5-1
Step 5.7
Multiply both sides of the equation by 4.
4r4=4(-32√4216√5-1)
Step 5.8
Simplify both sides of the equation.
Step 5.8.1
Simplify the left side.
Step 5.8.1.1
Cancel the common factor of 4.
Step 5.8.1.1.1
Cancel the common factor.
4r4=4(-32√4216√5-1)
Step 5.8.1.1.2
Rewrite the expression.
r=4(-32√4216√5-1)
r=4(-32√4216√5-1)
r=4(-32√4216√5-1)
Step 5.8.2
Simplify the right side.
Step 5.8.2.1
Simplify 4(-32√4216√5-1).
Step 5.8.2.1.1
Apply the distributive property.
r=4(-32√4216√5)+4⋅-1
Step 5.8.2.1.2
Multiply 4(-32√4216√5).
Step 5.8.2.1.2.1
Multiply -1 by 4.
r=-432√4216√5+4⋅-1
Step 5.8.2.1.2.2
Combine -4 and 32√4216√5.
r=-432√4216√5+4⋅-1
r=-432√4216√5+4⋅-1
Step 5.8.2.1.3
Multiply 4 by -1.
r=-432√4216√5-4
Step 5.8.2.1.4
Move the negative in front of the fraction.
r=-432√4216√5-4
r=-432√4216√5-4
r=-432√4216√5-4
r=-432√4216√5-4
Step 5.9
The complete solution is the result of both the positive and negative portions of the solution.
r=432√4216√5-4,-432√4216√5-4
r=432√4216√5-4,-432√4216√5-4
Step 6
The result can be shown in multiple forms.
Exact Form:
r=432√4216√5-4,-432√4216√5-4
Decimal Form:
r=0.06537775…,-8.06537775…