Basic Math Examples

Solve for r 8400=5000(1+r/4)^32
8400=5000(1+r4)328400=5000(1+r4)32
Step 1
Rewrite the equation as 5000(1+r4)32=8400.
5000(1+r4)32=8400
Step 2
Divide each term in 5000(1+r4)32=8400 by 5000 and simplify.
Tap for more steps...
Step 2.1
Divide each term in 5000(1+r4)32=8400 by 5000.
5000(1+r4)325000=84005000
Step 2.2
Simplify the left side.
Tap for more steps...
Step 2.2.1
Cancel the common factor of 5000.
Tap for more steps...
Step 2.2.1.1
Cancel the common factor.
5000(1+r4)325000=84005000
Step 2.2.1.2
Divide (1+r4)32 by 1.
(1+r4)32=84005000
(1+r4)32=84005000
(1+r4)32=84005000
Step 2.3
Simplify the right side.
Tap for more steps...
Step 2.3.1
Cancel the common factor of 8400 and 5000.
Tap for more steps...
Step 2.3.1.1
Factor 200 out of 8400.
(1+r4)32=200(42)5000
Step 2.3.1.2
Cancel the common factors.
Tap for more steps...
Step 2.3.1.2.1
Factor 200 out of 5000.
(1+r4)32=2004220025
Step 2.3.1.2.2
Cancel the common factor.
(1+r4)32=2004220025
Step 2.3.1.2.3
Rewrite the expression.
(1+r4)32=4225
(1+r4)32=4225
(1+r4)32=4225
(1+r4)32=4225
(1+r4)32=4225
Step 3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
1+r4=±324225
Step 4
Simplify ±324225.
Tap for more steps...
Step 4.1
Rewrite 324225 as 32423225.
1+r4=±32423225
Step 4.2
Simplify the denominator.
Tap for more steps...
Step 4.2.1
Rewrite 25 as 52.
1+r4=±32423252
Step 4.2.2
Rewrite 3252 as 1652.
1+r4=±32421652
Step 4.2.3
Pull terms out from under the radical, assuming positive real numbers.
1+r4=±3242165
1+r4=±3242165
1+r4=±3242165
Step 5
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 5.1
First, use the positive value of the ± to find the first solution.
1+r4=3242165
Step 5.2
Subtract 1 from both sides of the equation.
r4=3242165-1
Step 5.3
Multiply both sides of the equation by 4.
4r4=4(3242165-1)
Step 5.4
Simplify both sides of the equation.
Tap for more steps...
Step 5.4.1
Simplify the left side.
Tap for more steps...
Step 5.4.1.1
Cancel the common factor of 4.
Tap for more steps...
Step 5.4.1.1.1
Cancel the common factor.
4r4=4(3242165-1)
Step 5.4.1.1.2
Rewrite the expression.
r=4(3242165-1)
r=4(3242165-1)
r=4(3242165-1)
Step 5.4.2
Simplify the right side.
Tap for more steps...
Step 5.4.2.1
Simplify 4(3242165-1).
Tap for more steps...
Step 5.4.2.1.1
Apply the distributive property.
r=43242165+4-1
Step 5.4.2.1.2
Combine 4 and 3242165.
r=43242165+4-1
Step 5.4.2.1.3
Multiply 4 by -1.
r=43242165-4
r=43242165-4
r=43242165-4
r=43242165-4
Step 5.5
Next, use the negative value of the ± to find the second solution.
1+r4=-3242165
Step 5.6
Subtract 1 from both sides of the equation.
r4=-3242165-1
Step 5.7
Multiply both sides of the equation by 4.
4r4=4(-3242165-1)
Step 5.8
Simplify both sides of the equation.
Tap for more steps...
Step 5.8.1
Simplify the left side.
Tap for more steps...
Step 5.8.1.1
Cancel the common factor of 4.
Tap for more steps...
Step 5.8.1.1.1
Cancel the common factor.
4r4=4(-3242165-1)
Step 5.8.1.1.2
Rewrite the expression.
r=4(-3242165-1)
r=4(-3242165-1)
r=4(-3242165-1)
Step 5.8.2
Simplify the right side.
Tap for more steps...
Step 5.8.2.1
Simplify 4(-3242165-1).
Tap for more steps...
Step 5.8.2.1.1
Apply the distributive property.
r=4(-3242165)+4-1
Step 5.8.2.1.2
Multiply 4(-3242165).
Tap for more steps...
Step 5.8.2.1.2.1
Multiply -1 by 4.
r=-43242165+4-1
Step 5.8.2.1.2.2
Combine -4 and 3242165.
r=-43242165+4-1
r=-43242165+4-1
Step 5.8.2.1.3
Multiply 4 by -1.
r=-43242165-4
Step 5.8.2.1.4
Move the negative in front of the fraction.
r=-43242165-4
r=-43242165-4
r=-43242165-4
r=-43242165-4
Step 5.9
The complete solution is the result of both the positive and negative portions of the solution.
r=43242165-4,-43242165-4
r=43242165-4,-43242165-4
Step 6
The result can be shown in multiple forms.
Exact Form:
r=43242165-4,-43242165-4
Decimal Form:
r=0.06537775,-8.06537775
 [x2  12  π  xdx ]