Enter a problem...
Basic Math Examples
v=43πr3v=43πr3
Step 1
Rewrite the equation as 43⋅(πr3)=v.
43⋅(πr3)=v
Step 2
Multiply both sides of the equation by 143π.
143π(43⋅(πr3))=143πv
Step 3
Step 3.1
Simplify the left side.
Step 3.1.1
Simplify 143π(43⋅(πr3)).
Step 3.1.1.1
Combine 43 and π.
14π3(43⋅(πr3))=143πv
Step 3.1.1.2
Multiply the numerator by the reciprocal of the denominator.
134π(43⋅(πr3))=143πv
Step 3.1.1.3
Multiply 34π by 1.
34π(43⋅(πr3))=143πv
Step 3.1.1.4
Cancel the common factor of π.
Step 3.1.1.4.1
Factor π out of 4π.
3π⋅4(43⋅(πr3))=143πv
Step 3.1.1.4.2
Factor π out of 43⋅(πr3).
3π⋅4(π(43⋅(r3)))=143πv
Step 3.1.1.4.3
Cancel the common factor.
3π⋅4(π(43⋅(r3)))=143πv
Step 3.1.1.4.4
Rewrite the expression.
34(43⋅(r3))=143πv
34(43⋅(r3))=143πv
Step 3.1.1.5
Combine 43 and r3.
34⋅4r33=143πv
Step 3.1.1.6
Multiply 34 by 4r33.
3(4r3)4⋅3=143πv
Step 3.1.1.7
Multiply.
Step 3.1.1.7.1
Multiply 4 by 3.
12r34⋅3=143πv
Step 3.1.1.7.2
Multiply 4 by 3.
12r312=143πv
12r312=143πv
Step 3.1.1.8
Cancel the common factor of 12.
Step 3.1.1.8.1
Cancel the common factor.
12r312=143πv
Step 3.1.1.8.2
Divide r3 by 1.
r3=143πv
r3=143πv
r3=143πv
r3=143πv
Step 3.2
Simplify the right side.
Step 3.2.1
Simplify 143πv.
Step 3.2.1.1
Combine 43 and π.
r3=14π3v
Step 3.2.1.2
Multiply the numerator by the reciprocal of the denominator.
r3=134πv
Step 3.2.1.3
Multiply 34π by 1.
r3=34πv
Step 3.2.1.4
Combine 34π and v.
r3=3v4π
r3=3v4π
r3=3v4π
r3=3v4π
Step 4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
r=3√3v4π
Step 5
Step 5.1
Rewrite 3√3v4π as 3√3v3√4π.
r=3√3v3√4π
Step 5.2
Multiply 3√3v3√4π by 3√4π23√4π2.
r=3√3v3√4π⋅3√4π23√4π2
Step 5.3
Combine and simplify the denominator.
Step 5.3.1
Multiply 3√3v3√4π by 3√4π23√4π2.
r=3√3v3√4π23√4π3√4π2
Step 5.3.2
Raise 3√4π to the power of 1.
r=3√3v3√4π23√4π13√4π2
Step 5.3.3
Use the power rule aman=am+n to combine exponents.
r=3√3v3√4π23√4π1+2
Step 5.3.4
Add 1 and 2.
r=3√3v3√4π23√4π3
Step 5.3.5
Rewrite 3√4π3 as 4π.
Step 5.3.5.1
Use n√ax=axn to rewrite 3√4π as (4π)13.
r=3√3v3√4π2((4π)13)3
Step 5.3.5.2
Apply the power rule and multiply exponents, (am)n=amn.
r=3√3v3√4π2(4π)13⋅3
Step 5.3.5.3
Combine 13 and 3.
r=3√3v3√4π2(4π)33
Step 5.3.5.4
Cancel the common factor of 3.
Step 5.3.5.4.1
Cancel the common factor.
r=3√3v3√4π2(4π)33
Step 5.3.5.4.2
Rewrite the expression.
r=3√3v3√4π2(4π)1
r=3√3v3√4π2(4π)1
Step 5.3.5.5
Simplify.
r=3√3v3√4π24π
r=3√3v3√4π24π
r=3√3v3√4π24π
Step 5.4
Simplify the numerator.
Step 5.4.1
Rewrite 3√4π2 as 3√(4π)2.
r=3√3v3√(4π)24π
Step 5.4.2
Apply the product rule to 4π.
r=3√3v3√42π24π
Step 5.4.3
Raise 4 to the power of 2.
r=3√3v3√16π24π
Step 5.4.4
Rewrite 16π2 as 23⋅(2π2).
Step 5.4.4.1
Factor 8 out of 16.
r=3√3v3√8(2)π24π
Step 5.4.4.2
Rewrite 8 as 23.
r=3√3v3√23⋅2π24π
Step 5.4.4.3
Add parentheses.
r=3√3v3√23⋅(2π2)4π
r=3√3v3√23⋅(2π2)4π
Step 5.4.5
Pull terms out from under the radical.
r=3√3v⋅23√2π24π
Step 5.4.6
Combine exponents.
Step 5.4.6.1
Combine using the product rule for radicals.
r=23√3v(2π2)4π
Step 5.4.6.2
Multiply 2 by 3.
r=23√6vπ24π
r=23√6vπ24π
r=23√6vπ24π
Step 5.5
Cancel the common factor of 2 and 4.
Step 5.5.1
Factor 2 out of 23√6vπ2.
r=2(3√6vπ2)4π
Step 5.5.2
Cancel the common factors.
Step 5.5.2.1
Factor 2 out of 4π.
r=2(3√6vπ2)2(2π)
Step 5.5.2.2
Cancel the common factor.
r=23√6vπ22(2π)
Step 5.5.2.3
Rewrite the expression.
r=3√6vπ22π
r=3√6vπ22π
r=3√6vπ22π
r=3√6vπ22π