Basic Math Examples

Solve for r v=4/3pir^3
v=43πr3v=43πr3
Step 1
Rewrite the equation as 43(πr3)=v.
43(πr3)=v
Step 2
Multiply both sides of the equation by 143π.
143π(43(πr3))=143πv
Step 3
Simplify both sides of the equation.
Tap for more steps...
Step 3.1
Simplify the left side.
Tap for more steps...
Step 3.1.1
Simplify 143π(43(πr3)).
Tap for more steps...
Step 3.1.1.1
Combine 43 and π.
14π3(43(πr3))=143πv
Step 3.1.1.2
Multiply the numerator by the reciprocal of the denominator.
134π(43(πr3))=143πv
Step 3.1.1.3
Multiply 34π by 1.
34π(43(πr3))=143πv
Step 3.1.1.4
Cancel the common factor of π.
Tap for more steps...
Step 3.1.1.4.1
Factor π out of 4π.
3π4(43(πr3))=143πv
Step 3.1.1.4.2
Factor π out of 43(πr3).
3π4(π(43(r3)))=143πv
Step 3.1.1.4.3
Cancel the common factor.
3π4(π(43(r3)))=143πv
Step 3.1.1.4.4
Rewrite the expression.
34(43(r3))=143πv
34(43(r3))=143πv
Step 3.1.1.5
Combine 43 and r3.
344r33=143πv
Step 3.1.1.6
Multiply 34 by 4r33.
3(4r3)43=143πv
Step 3.1.1.7
Multiply.
Tap for more steps...
Step 3.1.1.7.1
Multiply 4 by 3.
12r343=143πv
Step 3.1.1.7.2
Multiply 4 by 3.
12r312=143πv
12r312=143πv
Step 3.1.1.8
Cancel the common factor of 12.
Tap for more steps...
Step 3.1.1.8.1
Cancel the common factor.
12r312=143πv
Step 3.1.1.8.2
Divide r3 by 1.
r3=143πv
r3=143πv
r3=143πv
r3=143πv
Step 3.2
Simplify the right side.
Tap for more steps...
Step 3.2.1
Simplify 143πv.
Tap for more steps...
Step 3.2.1.1
Combine 43 and π.
r3=14π3v
Step 3.2.1.2
Multiply the numerator by the reciprocal of the denominator.
r3=134πv
Step 3.2.1.3
Multiply 34π by 1.
r3=34πv
Step 3.2.1.4
Combine 34π and v.
r3=3v4π
r3=3v4π
r3=3v4π
r3=3v4π
Step 4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
r=33v4π
Step 5
Simplify 33v4π.
Tap for more steps...
Step 5.1
Rewrite 33v4π as 33v34π.
r=33v34π
Step 5.2
Multiply 33v34π by 34π234π2.
r=33v34π34π234π2
Step 5.3
Combine and simplify the denominator.
Tap for more steps...
Step 5.3.1
Multiply 33v34π by 34π234π2.
r=33v34π234π34π2
Step 5.3.2
Raise 34π to the power of 1.
r=33v34π234π134π2
Step 5.3.3
Use the power rule aman=am+n to combine exponents.
r=33v34π234π1+2
Step 5.3.4
Add 1 and 2.
r=33v34π234π3
Step 5.3.5
Rewrite 34π3 as 4π.
Tap for more steps...
Step 5.3.5.1
Use nax=axn to rewrite 34π as (4π)13.
r=33v34π2((4π)13)3
Step 5.3.5.2
Apply the power rule and multiply exponents, (am)n=amn.
r=33v34π2(4π)133
Step 5.3.5.3
Combine 13 and 3.
r=33v34π2(4π)33
Step 5.3.5.4
Cancel the common factor of 3.
Tap for more steps...
Step 5.3.5.4.1
Cancel the common factor.
r=33v34π2(4π)33
Step 5.3.5.4.2
Rewrite the expression.
r=33v34π2(4π)1
r=33v34π2(4π)1
Step 5.3.5.5
Simplify.
r=33v34π24π
r=33v34π24π
r=33v34π24π
Step 5.4
Simplify the numerator.
Tap for more steps...
Step 5.4.1
Rewrite 34π2 as 3(4π)2.
r=33v3(4π)24π
Step 5.4.2
Apply the product rule to 4π.
r=33v342π24π
Step 5.4.3
Raise 4 to the power of 2.
r=33v316π24π
Step 5.4.4
Rewrite 16π2 as 23(2π2).
Tap for more steps...
Step 5.4.4.1
Factor 8 out of 16.
r=33v38(2)π24π
Step 5.4.4.2
Rewrite 8 as 23.
r=33v3232π24π
Step 5.4.4.3
Add parentheses.
r=33v323(2π2)4π
r=33v323(2π2)4π
Step 5.4.5
Pull terms out from under the radical.
r=33v232π24π
Step 5.4.6
Combine exponents.
Tap for more steps...
Step 5.4.6.1
Combine using the product rule for radicals.
r=233v(2π2)4π
Step 5.4.6.2
Multiply 2 by 3.
r=236vπ24π
r=236vπ24π
r=236vπ24π
Step 5.5
Cancel the common factor of 2 and 4.
Tap for more steps...
Step 5.5.1
Factor 2 out of 236vπ2.
r=2(36vπ2)4π
Step 5.5.2
Cancel the common factors.
Tap for more steps...
Step 5.5.2.1
Factor 2 out of 4π.
r=2(36vπ2)2(2π)
Step 5.5.2.2
Cancel the common factor.
r=236vπ22(2π)
Step 5.5.2.3
Rewrite the expression.
r=36vπ22π
r=36vπ22π
r=36vπ22π
r=36vπ22π
 [x2  12  π  xdx ]