Enter a problem...
Basic Math Examples
p⋅r2=58.27p⋅r2=58.27
Step 1
Step 1.1
Divide each term in p⋅r2=58.27p⋅r2=58.27 by pp.
p⋅r2p=58.27pp⋅r2p=58.27p
Step 1.2
Simplify the left side.
Step 1.2.1
Cancel the common factor of pp.
Step 1.2.1.1
Cancel the common factor.
p⋅r2p=58.27p
Step 1.2.1.2
Divide r2 by 1.
r2=58.27p
r2=58.27p
r2=58.27p
r2=58.27p
Step 2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
r=±√58.27p
Step 3
Step 3.1
Rewrite √58.27p as √58.27√p.
r=±√58.27√p
Step 3.2
Multiply √58.27√p by √p√p.
r=±√58.27√p⋅√p√p
Step 3.3
Simplify terms.
Step 3.3.1
Combine and simplify the denominator.
Step 3.3.1.1
Multiply √58.27√p by √p√p.
r=±√58.27√p√p√p
Step 3.3.1.2
Raise √p to the power of 1.
r=±√58.27√p√p1√p
Step 3.3.1.3
Raise √p to the power of 1.
r=±√58.27√p√p1√p1
Step 3.3.1.4
Use the power rule aman=am+n to combine exponents.
r=±√58.27√p√p1+1
Step 3.3.1.5
Add 1 and 1.
r=±√58.27√p√p2
Step 3.3.1.6
Rewrite √p2 as p.
Step 3.3.1.6.1
Use n√ax=axn to rewrite √p as p12.
r=±√58.27√p(p12)2
Step 3.3.1.6.2
Apply the power rule and multiply exponents, (am)n=amn.
r=±√58.27√pp12⋅2
Step 3.3.1.6.3
Combine 12 and 2.
r=±√58.27√pp22
Step 3.3.1.6.4
Cancel the common factor of 2.
Step 3.3.1.6.4.1
Cancel the common factor.
r=±√58.27√pp22
Step 3.3.1.6.4.2
Rewrite the expression.
r=±√58.27√pp1
r=±√58.27√pp1
Step 3.3.1.6.5
Simplify.
r=±√58.27√pp
r=±√58.27√pp
r=±√58.27√pp
Step 3.3.2
Combine using the product rule for radicals.
r=±√58.27pp
r=±√58.27pp
Step 3.4
Simplify the numerator.
Step 3.4.1
Rewrite 58.27p as (2.762875112)2p.
Step 3.4.1.1
Rewrite 58.27 as 7.633478892.
r=±√7.633478892pp
Step 3.4.1.2
Rewrite 7.63347889 as 2.762875112.
r=±√(2.762875112)2pp
r=±√(2.762875112)2pp
Step 3.4.2
Pull terms out from under the radical.
r=±2.762875112√pp
Step 3.4.3
Raise 2.76287511 to the power of 2.
r=±7.63347889√pp
r=±7.63347889√pp
r=±7.63347889√pp
Step 4
Step 4.1
First, use the positive value of the ± to find the first solution.
r=7.63347889√pp
Step 4.2
Next, use the negative value of the ± to find the second solution.
r=-7.63347889√pp
Step 4.3
The complete solution is the result of both the positive and negative portions of the solution.
r=7.63347889√pp
r=-7.63347889√pp
r=7.63347889√pp
r=-7.63347889√pp