Enter a problem...
Basic Math Examples
ln(f)=ln(p⋅(1+r)n)ln(f)=ln(p⋅(1+r)n)
Step 1
Rewrite the equation as ln(p⋅(1+r)n)=ln(f)ln(p⋅(1+r)n)=ln(f).
ln(p⋅(1+r)n)=ln(f)ln(p⋅(1+r)n)=ln(f)
Step 2
Step 2.1
Rewrite ln(p⋅(1+r)n)ln(p⋅(1+r)n) as ln(p)+ln((1+r)n)ln(p)+ln((1+r)n).
ln(p)+ln((1+r)n)ln(p)+ln((1+r)n)
Step 2.2
Expand ln((1+r)n)ln((1+r)n) by moving nn outside the logarithm.
ln(p)+nln(1+r)ln(p)+nln(1+r)
ln(p)+nln(1+r)ln(p)+nln(1+r)
Step 3
The expanded equation is ln(p)+nln(1+r)=ln(f)ln(p)+nln(1+r)=ln(f).
ln(p)+nln(1+r)=ln(f)ln(p)+nln(1+r)=ln(f)
Step 4
Step 4.1
Reorder 11 and rr.
ln(p)+nln(r+1)=ln(f)ln(p)+nln(r+1)=ln(f)
Step 4.2
Reorder ln(p)ln(p) and nln(r+1)nln(r+1).
nln(r+1)+ln(p)=ln(f)nln(r+1)+ln(p)=ln(f)
nln(r+1)+ln(p)=ln(f)nln(r+1)+ln(p)=ln(f)
Step 5
Move all the terms containing a logarithm to the left side of the equation.
nln(r+1)+ln(p)-ln(f)=0nln(r+1)+ln(p)−ln(f)=0
Step 6
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy)logb(x)−logb(y)=logb(xy).
nln(r+1)+ln(pf)=0nln(r+1)+ln(pf)=0
Step 7
Subtract ln(pf)ln(pf) from both sides of the equation.
nln(r+1)=-ln(pf)nln(r+1)=−ln(pf)
Step 8
Step 8.1
Divide each term in nln(r+1)=-ln(pf)nln(r+1)=−ln(pf) by nn.
nln(r+1)n=-ln(pf)nnln(r+1)n=−ln(pf)n
Step 8.2
Simplify the left side.
Step 8.2.1
Cancel the common factor of nn.
Step 8.2.1.1
Cancel the common factor.
nln(r+1)n=-ln(pf)n
Step 8.2.1.2
Divide ln(r+1) by 1.
ln(r+1)=-ln(pf)n
ln(r+1)=-ln(pf)n
ln(r+1)=-ln(pf)n
Step 8.3
Simplify the right side.
Step 8.3.1
Move the negative in front of the fraction.
ln(r+1)=-ln(pf)n
ln(r+1)=-ln(pf)n
ln(r+1)=-ln(pf)n
Step 9
To solve for r, rewrite the equation using properties of logarithms.
eln(r+1)=e-ln(pf)n
Step 10
Rewrite ln(r+1)=-ln(pf)n in exponential form using the definition of a logarithm. If x and b are positive real numbers and b≠1, then logb(x)=y is equivalent to by=x.
e-ln(pf)n=r+1
Step 11
Step 11.1
Rewrite the equation as r+1=e-ln(pf)n.
r+1=e-ln(pf)n
Step 11.2
Subtract 1 from both sides of the equation.
r=e-ln(pf)n-1
r=e-ln(pf)n-1