Enter a problem...
Basic Math Examples
An=(-4n)n-1An=(−4n)n−1
Step 1
Since nn is on the right side of the equation, switch the sides so it is on the left side of the equation.
(-4n)n-1=An(−4n)n−1=An
Step 2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln((-4n)n-1)=ln(An)ln((−4n)n−1)=ln(An)
Step 3
Expand ln((-4n)n-1)ln((−4n)n−1) by moving n-1n−1 outside the logarithm.
(n-1)ln(-4n)=ln(An)(n−1)ln(−4n)=ln(An)
Step 4
Step 4.1
Simplify (n-1)ln(-4n)(n−1)ln(−4n).
Step 4.1.1
Apply the distributive property.
nln(-4n)-1ln(-4n)=ln(An)nln(−4n)−1ln(−4n)=ln(An)
Step 4.1.2
Rewrite -1ln(-4n)−1ln(−4n) as -ln(-4n)−ln(−4n).
nln(-4n)-ln(-4n)=ln(An)nln(−4n)−ln(−4n)=ln(An)
nln(-4n)-ln(-4n)=ln(An)nln(−4n)−ln(−4n)=ln(An)
nln(-4n)-ln(-4n)=ln(An)nln(−4n)−ln(−4n)=ln(An)
Step 5
Move all the terms containing a logarithm to the left side of the equation.
nln(-4n)-ln(-4n)-ln(An)=0nln(−4n)−ln(−4n)−ln(An)=0
Step 6
To solve for nn, rewrite the equation using properties of logarithms.
eln(An)=enln(-4n)-ln(-4n)eln(An)=enln(−4n)−ln(−4n)
Step 7
Rewrite ln(An)=nln(-4n)-ln(-4n)ln(An)=nln(−4n)−ln(−4n) in exponential form using the definition of a logarithm. If xx and bb are positive real numbers and b≠1b≠1, then logb(x)=ylogb(x)=y is equivalent to by=xby=x.
enln(-4n)-ln(-4n)=Anenln(−4n)−ln(−4n)=An
Step 8
Step 8.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(enln(-4n)-ln(-4n))=ln(An)ln(enln(−4n)−ln(−4n))=ln(An)
Step 8.2
Expand the left side.
Step 8.2.1
Expand ln(enln(-4n)-ln(-4n))ln(enln(−4n)−ln(−4n)) by moving nln(-4n)-ln(-4n)nln(−4n)−ln(−4n) outside the logarithm.
(nln(-4n)-ln(-4n))ln(e)=ln(An)(nln(−4n)−ln(−4n))ln(e)=ln(An)
Step 8.2.2
The natural logarithm of ee is 11.
(nln(-4n)-ln(-4n))⋅1=ln(An)(nln(−4n)−ln(−4n))⋅1=ln(An)
Step 8.2.3
Multiply nln(-4n)-ln(-4n)nln(−4n)−ln(−4n) by 11.
nln(-4n)-ln(-4n)=ln(An)nln(−4n)−ln(−4n)=ln(An)
nln(-4n)-ln(-4n)=ln(An)nln(−4n)−ln(−4n)=ln(An)
Step 8.3
Move all the terms containing a logarithm to the left side of the equation.
nln(-4n)-ln(-4n)-ln(An)=0nln(−4n)−ln(−4n)−ln(An)=0
Step 8.4
To solve for nn, rewrite the equation using properties of logarithms.
eln(An)=enln(-4n)-ln(-4n)eln(An)=enln(−4n)−ln(−4n)
Step 8.5
Rewrite ln(An)=nln(-4n)-ln(-4n)ln(An)=nln(−4n)−ln(−4n) in exponential form using the definition of a logarithm. If xx and bb are positive real numbers and b≠1b≠1, then logb(x)=ylogb(x)=y is equivalent to by=xby=x.
enln(-4n)-ln(-4n)=Anenln(−4n)−ln(−4n)=An
Step 8.6
Solve for nn.
Step 8.6.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(enln(-4n)-ln(-4n))=ln(An)ln(enln(−4n)−ln(−4n))=ln(An)
Step 8.6.2
Expand the left side.
Step 8.6.2.1
Expand ln(enln(-4n)-ln(-4n))ln(enln(−4n)−ln(−4n)) by moving nln(-4n)-ln(-4n)nln(−4n)−ln(−4n) outside the logarithm.
(nln(-4n)-ln(-4n))ln(e)=ln(An)(nln(−4n)−ln(−4n))ln(e)=ln(An)
Step 8.6.2.2
The natural logarithm of ee is 11.
(nln(-4n)-ln(-4n))⋅1=ln(An)(nln(−4n)−ln(−4n))⋅1=ln(An)
Step 8.6.2.3
Multiply nln(-4n)-ln(-4n)nln(−4n)−ln(−4n) by 11.
nln(-4n)-ln(-4n)=ln(An)nln(−4n)−ln(−4n)=ln(An)
nln(-4n)-ln(-4n)=ln(An)nln(−4n)−ln(−4n)=ln(An)
Step 8.6.3
Move all the terms containing a logarithm to the left side of the equation.
nln(-4n)-ln(-4n)-ln(An)=0nln(−4n)−ln(−4n)−ln(An)=0
Step 8.6.4
To solve for nn, rewrite the equation using properties of logarithms.
eln(An)=enln(-4n)-ln(-4n)eln(An)=enln(−4n)−ln(−4n)
Step 8.6.5
Rewrite ln(An)=nln(-4n)-ln(-4n)ln(An)=nln(−4n)−ln(−4n) in exponential form using the definition of a logarithm. If xx and bb are positive real numbers and b≠1b≠1, then logb(x)=ylogb(x)=y is equivalent to by=xby=x.
enln(-4n)-ln(-4n)=Anenln(−4n)−ln(−4n)=An
Step 8.6.6
Solve for nn.
Step 8.6.6.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(enln(-4n)-ln(-4n))=ln(An)ln(enln(−4n)−ln(−4n))=ln(An)
Step 8.6.6.2
Expand the left side.
Step 8.6.6.2.1
Expand ln(enln(-4n)-ln(-4n))ln(enln(−4n)−ln(−4n)) by moving nln(-4n)-ln(-4n)nln(−4n)−ln(−4n) outside the logarithm.
(nln(-4n)-ln(-4n))ln(e)=ln(An)(nln(−4n)−ln(−4n))ln(e)=ln(An)
Step 8.6.6.2.2
The natural logarithm of ee is 11.
(nln(-4n)-ln(-4n))⋅1=ln(An)(nln(−4n)−ln(−4n))⋅1=ln(An)
Step 8.6.6.2.3
Multiply nln(-4n)-ln(-4n)nln(−4n)−ln(−4n) by 11.
nln(-4n)-ln(-4n)=ln(An)nln(−4n)−ln(−4n)=ln(An)
nln(-4n)-ln(-4n)=ln(An)nln(−4n)−ln(−4n)=ln(An)
Step 8.6.6.3
Move all the terms containing a logarithm to the left side of the equation.
nln(-4n)-ln(-4n)-ln(An)=0nln(−4n)−ln(−4n)−ln(An)=0
Step 8.6.6.4
To solve for nn, rewrite the equation using properties of logarithms.
eln(An)=enln(-4n)-ln(-4n)eln(An)=enln(−4n)−ln(−4n)
Step 8.6.6.5
Rewrite ln(An)=nln(-4n)-ln(-4n)ln(An)=nln(−4n)−ln(−4n) in exponential form using the definition of a logarithm. If xx and bb are positive real numbers and b≠1b≠1, then logb(x)=ylogb(x)=y is equivalent to by=xby=x.
enln(-4n)-ln(-4n)=Anenln(−4n)−ln(−4n)=An
Step 8.6.6.6
Solve for nn.
Step 8.6.6.6.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(enln(-4n)-ln(-4n))=ln(An)ln(enln(−4n)−ln(−4n))=ln(An)
Step 8.6.6.6.2
Expand the left side.
Step 8.6.6.6.2.1
Expand ln(enln(-4n)-ln(-4n))ln(enln(−4n)−ln(−4n)) by moving nln(-4n)-ln(-4n)nln(−4n)−ln(−4n) outside the logarithm.
(nln(-4n)-ln(-4n))ln(e)=ln(An)(nln(−4n)−ln(−4n))ln(e)=ln(An)
Step 8.6.6.6.2.2
The natural logarithm of ee is 11.
(nln(-4n)-ln(-4n))⋅1=ln(An)(nln(−4n)−ln(−4n))⋅1=ln(An)
Step 8.6.6.6.2.3
Multiply nln(-4n)-ln(-4n)nln(−4n)−ln(−4n) by 11.
nln(-4n)-ln(-4n)=ln(An)nln(−4n)−ln(−4n)=ln(An)
nln(-4n)-ln(-4n)=ln(An)nln(−4n)−ln(−4n)=ln(An)
Step 8.6.6.6.3
Subtract ln(An)ln(An) from both sides of the equation.
nln(-4n)-ln(-4n)-ln(An)=0nln(−4n)−ln(−4n)−ln(An)=0
Step 8.6.6.6.4
Reorder AA and nn.
nln(-4n)-ln(-4n)-ln(nA)=0nln(−4n)−ln(−4n)−ln(nA)=0
Step 8.6.6.6.5
To solve for nn, rewrite the equation using properties of logarithms.
eln(nA)=enln(-4n)-ln(-4n)eln(nA)=enln(−4n)−ln(−4n)
Step 8.6.6.6.6
Rewrite ln(nA)=nln(-4n)-ln(-4n)ln(nA)=nln(−4n)−ln(−4n) in exponential form using the definition of a logarithm. If xx and bb are positive real numbers and b≠1b≠1, then logb(x)=ylogb(x)=y is equivalent to by=xby=x.
enln(-4n)-ln(-4n)=nAenln(−4n)−ln(−4n)=nA
Step 8.6.6.6.7
Solve for nn.
Step 8.6.6.6.7.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(enln(-4n)-ln(-4n))=ln(nA)ln(enln(−4n)−ln(−4n))=ln(nA)
Step 8.6.6.6.7.2
Expand the left side.
Step 8.6.6.6.7.2.1
Expand ln(enln(-4n)-ln(-4n))ln(enln(−4n)−ln(−4n)) by moving nln(-4n)-ln(-4n)nln(−4n)−ln(−4n) outside the logarithm.
(nln(-4n)-ln(-4n))ln(e)=ln(nA)(nln(−4n)−ln(−4n))ln(e)=ln(nA)
Step 8.6.6.6.7.2.2
The natural logarithm of ee is 11.
(nln(-4n)-ln(-4n))⋅1=ln(nA)(nln(−4n)−ln(−4n))⋅1=ln(nA)
Step 8.6.6.6.7.2.3
Multiply nln(-4n)-ln(-4n)nln(−4n)−ln(−4n) by 11.
nln(-4n)-ln(-4n)=ln(nA)nln(−4n)−ln(−4n)=ln(nA)
nln(-4n)-ln(-4n)=ln(nA)nln(−4n)−ln(−4n)=ln(nA)
Step 8.6.6.6.7.3
Move all the terms containing a logarithm to the left side of the equation.
nln(-4n)-ln(-4n)-ln(nA)=0nln(−4n)−ln(−4n)−ln(nA)=0
Step 8.6.6.6.7.4
To solve for nn, rewrite the equation using properties of logarithms.
eln(nA)=enln(-4n)-ln(-4n)eln(nA)=enln(−4n)−ln(−4n)
Step 8.6.6.6.7.5
Rewrite ln(nA)=nln(-4n)-ln(-4n)ln(nA)=nln(−4n)−ln(−4n) in exponential form using the definition of a logarithm. If xx and bb are positive real numbers and b≠1b≠1, then logb(x)=ylogb(x)=y is equivalent to by=xby=x.
enln(-4n)-ln(-4n)=nAenln(−4n)−ln(−4n)=nA
Step 8.6.6.6.7.6
Solve for nn.
Step 8.6.6.6.7.6.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(enln(-4n)-ln(-4n))=ln(nA)ln(enln(−4n)−ln(−4n))=ln(nA)
Step 8.6.6.6.7.6.2
Expand the left side.
Step 8.6.6.6.7.6.2.1
Expand ln(enln(-4n)-ln(-4n))ln(enln(−4n)−ln(−4n)) by moving nln(-4n)-ln(-4n)nln(−4n)−ln(−4n) outside the logarithm.
(nln(-4n)-ln(-4n))ln(e)=ln(nA)(nln(−4n)−ln(−4n))ln(e)=ln(nA)
Step 8.6.6.6.7.6.2.2
The natural logarithm of ee is 11.
(nln(-4n)-ln(-4n))⋅1=ln(nA)(nln(−4n)−ln(−4n))⋅1=ln(nA)
Step 8.6.6.6.7.6.2.3
Multiply nln(-4n)-ln(-4n)nln(−4n)−ln(−4n) by 11.
nln(-4n)-ln(-4n)=ln(nA)nln(−4n)−ln(−4n)=ln(nA)
nln(-4n)-ln(-4n)=ln(nA)nln(−4n)−ln(−4n)=ln(nA)
Step 8.6.6.6.7.6.3
Move all the terms containing a logarithm to the left side of the equation.
nln(-4n)-ln(-4n)-ln(nA)=0nln(−4n)−ln(−4n)−ln(nA)=0
Step 8.6.6.6.7.6.4
To solve for nn, rewrite the equation using properties of logarithms.
eln(nA)=enln(-4n)-ln(-4n)eln(nA)=enln(−4n)−ln(−4n)
Step 8.6.6.6.7.6.5
Rewrite ln(nA)=nln(-4n)-ln(-4n)ln(nA)=nln(−4n)−ln(−4n) in exponential form using the definition of a logarithm. If xx and bb are positive real numbers and b≠1b≠1, then logb(x)=ylogb(x)=y is equivalent to by=xby=x.
enln(-4n)-ln(-4n)=nAenln(−4n)−ln(−4n)=nA
Step 8.6.6.6.7.6.6
Solve for nn.
Step 8.6.6.6.7.6.6.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(enln(-4n)-ln(-4n))=ln(nA)ln(enln(−4n)−ln(−4n))=ln(nA)
Step 8.6.6.6.7.6.6.2
Expand the left side.
Step 8.6.6.6.7.6.6.2.1
Expand ln(enln(-4n)-ln(-4n))ln(enln(−4n)−ln(−4n)) by moving nln(-4n)-ln(-4n)nln(−4n)−ln(−4n) outside the logarithm.
(nln(-4n)-ln(-4n))ln(e)=ln(nA)(nln(−4n)−ln(−4n))ln(e)=ln(nA)
Step 8.6.6.6.7.6.6.2.2
The natural logarithm of ee is 11.
(nln(-4n)-ln(-4n))⋅1=ln(nA)(nln(−4n)−ln(−4n))⋅1=ln(nA)
Step 8.6.6.6.7.6.6.2.3
Multiply nln(-4n)-ln(-4n)nln(−4n)−ln(−4n) by 11.
nln(-4n)-ln(-4n)=ln(nA)nln(−4n)−ln(−4n)=ln(nA)
nln(-4n)-ln(-4n)=ln(nA)nln(−4n)−ln(−4n)=ln(nA)
Step 8.6.6.6.7.6.6.3
Move all the terms containing a logarithm to the left side of the equation.
nln(-4n)-ln(-4n)-ln(nA)=0nln(−4n)−ln(−4n)−ln(nA)=0
Step 8.6.6.6.7.6.6.4
To solve for nn, rewrite the equation using properties of logarithms.
eln(nA)=enln(-4n)-ln(-4n)eln(nA)=enln(−4n)−ln(−4n)
Step 8.6.6.6.7.6.6.5
Rewrite ln(nA)=nln(-4n)-ln(-4n)ln(nA)=nln(−4n)−ln(−4n) in exponential form using the definition of a logarithm. If xx and bb are positive real numbers and b≠1b≠1, then logb(x)=ylogb(x)=y is equivalent to by=xby=x.
enln(-4n)-ln(-4n)=nAenln(−4n)−ln(−4n)=nA
Step 8.6.6.6.7.6.6.6
Solve for nn.
Step 8.6.6.6.7.6.6.6.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(enln(-4n)-ln(-4n))=ln(nA)ln(enln(−4n)−ln(−4n))=ln(nA)
Step 8.6.6.6.7.6.6.6.2
Expand the left side.
Step 8.6.6.6.7.6.6.6.2.1
Expand ln(enln(-4n)-ln(-4n))ln(enln(−4n)−ln(−4n)) by moving nln(-4n)-ln(-4n)nln(−4n)−ln(−4n) outside the logarithm.
(nln(-4n)-ln(-4n))ln(e)=ln(nA)(nln(−4n)−ln(−4n))ln(e)=ln(nA)
Step 8.6.6.6.7.6.6.6.2.2
The natural logarithm of ee is 11.
(nln(-4n)-ln(-4n))⋅1=ln(nA)(nln(−4n)−ln(−4n))⋅1=ln(nA)
Step 8.6.6.6.7.6.6.6.2.3
Multiply nln(-4n)-ln(-4n)nln(−4n)−ln(−4n) by 11.
nln(-4n)-ln(-4n)=ln(nA)nln(−4n)−ln(−4n)=ln(nA)
nln(-4n)-ln(-4n)=ln(nA)nln(−4n)−ln(−4n)=ln(nA)
Step 8.6.6.6.7.6.6.6.3
Move all the terms containing a logarithm to the left side of the equation.
nln(-4n)-ln(-4n)-ln(nA)=0nln(−4n)−ln(−4n)−ln(nA)=0
Step 8.6.6.6.7.6.6.6.4
To solve for nn, rewrite the equation using properties of logarithms.
eln(nA)=enln(-4n)-ln(-4n)eln(nA)=enln(−4n)−ln(−4n)
Step 8.6.6.6.7.6.6.6.5
Rewrite ln(nA)=nln(-4n)-ln(-4n)ln(nA)=nln(−4n)−ln(−4n) in exponential form using the definition of a logarithm. If xx and bb are positive real numbers and b≠1b≠1, then logb(x)=ylogb(x)=y is equivalent to by=xby=x.
enln(-4n)-ln(-4n)=nAenln(−4n)−ln(−4n)=nA
Step 8.6.6.6.7.6.6.6.6
Solve for nn.
Step 8.6.6.6.7.6.6.6.6.1
Subtract nAnA from both sides of the equation.
enln(-4n)-ln(-4n)-nA=0enln(−4n)−ln(−4n)−nA=0
Step 8.6.6.6.7.6.6.6.6.2
Move all the terms containing a logarithm to the left side of the equation.
enln(-4n)-ln(-4n)=nA+0enln(−4n)−ln(−4n)=nA+0
Step 8.6.6.6.7.6.6.6.6.3
Add nAnA and 00.
enln(-4n)-ln(-4n)=nAenln(−4n)−ln(−4n)=nA
Step 8.6.6.6.7.6.6.6.6.4
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(enln(-4n)-ln(-4n))=ln(nA)ln(enln(−4n)−ln(−4n))=ln(nA)
Step 8.6.6.6.7.6.6.6.6.5
Expand the left side.
Step 8.6.6.6.7.6.6.6.6.5.1
Expand ln(enln(-4n)-ln(-4n))ln(enln(−4n)−ln(−4n)) by moving nln(-4n)-ln(-4n)nln(−4n)−ln(−4n) outside the logarithm.
(nln(-4n)-ln(-4n))ln(e)=ln(nA)(nln(−4n)−ln(−4n))ln(e)=ln(nA)
Step 8.6.6.6.7.6.6.6.6.5.2
The natural logarithm of ee is 11.
(nln(-4n)-ln(-4n))⋅1=ln(nA)(nln(−4n)−ln(−4n))⋅1=ln(nA)
Step 8.6.6.6.7.6.6.6.6.5.3
Multiply nln(-4n)-ln(-4n)nln(−4n)−ln(−4n) by 11.
nln(-4n)-ln(-4n)=ln(nA)nln(−4n)−ln(−4n)=ln(nA)
nln(-4n)-ln(-4n)=ln(nA)
Step 8.6.6.6.7.6.6.6.6.6
Subtract ln(nA) from both sides of the equation.
nln(-4n)-ln(-4n)-ln(nA)=0
Step 8.6.6.6.7.6.6.6.6.7
To solve for n, rewrite the equation using properties of logarithms.
eln(nA)=enln(-4n)-ln(-4n)
Step 8.6.6.6.7.6.6.6.6.8
Rewrite ln(nA)=nln(-4n)-ln(-4n) in exponential form using the definition of a logarithm. If x and b are positive real numbers and b≠1, then logb(x)=y is equivalent to by=x.
enln(-4n)-ln(-4n)=nA
Step 8.6.6.6.7.6.6.6.6.9
Solve for n.
Step 8.6.6.6.7.6.6.6.6.9.1
Subtract nA from both sides of the equation.
enln(-4n)-ln(-4n)-nA=0
Step 8.6.6.6.7.6.6.6.6.9.2
Move all the terms containing a logarithm to the left side of the equation.
enln(-4n)-ln(-4n)=nA+0
Step 8.6.6.6.7.6.6.6.6.9.3
Add nA and 0.
enln(-4n)-ln(-4n)=nA
Step 8.6.6.6.7.6.6.6.6.9.4
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(enln(-4n)-ln(-4n))=ln(nA)
Step 8.6.6.6.7.6.6.6.6.9.5
Expand the left side.
Step 8.6.6.6.7.6.6.6.6.9.5.1
Expand ln(enln(-4n)-ln(-4n)) by moving nln(-4n)-ln(-4n) outside the logarithm.
(nln(-4n)-ln(-4n))ln(e)=ln(nA)
Step 8.6.6.6.7.6.6.6.6.9.5.2
The natural logarithm of e is 1.
(nln(-4n)-ln(-4n))⋅1=ln(nA)
Step 8.6.6.6.7.6.6.6.6.9.5.3
Multiply nln(-4n)-ln(-4n) by 1.
nln(-4n)-ln(-4n)=ln(nA)
nln(-4n)-ln(-4n)=ln(nA)
Step 8.6.6.6.7.6.6.6.6.9.6
Subtract ln(nA) from both sides of the equation.
nln(-4n)-ln(-4n)-ln(nA)=0
Step 8.6.6.6.7.6.6.6.6.9.7
To solve for n, rewrite the equation using properties of logarithms.
eln(nA)=enln(-4n)-ln(-4n)
Step 8.6.6.6.7.6.6.6.6.9.8
Rewrite ln(nA)=nln(-4n)-ln(-4n) in exponential form using the definition of a logarithm. If x and b are positive real numbers and b≠1, then logb(x)=y is equivalent to by=x.
enln(-4n)-ln(-4n)=nA
Step 8.6.6.6.7.6.6.6.6.9.9
Solve for n.
Step 8.6.6.6.7.6.6.6.6.9.9.1
Subtract nA from both sides of the equation.
enln(-4n)-ln(-4n)-nA=0
Step 8.6.6.6.7.6.6.6.6.9.9.2
Move all the terms containing a logarithm to the left side of the equation.
enln(-4n)-ln(-4n)=nA+0
Step 8.6.6.6.7.6.6.6.6.9.9.3
Add nA and 0.
enln(-4n)-ln(-4n)=nA
Step 8.6.6.6.7.6.6.6.6.9.9.4
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(enln(-4n)-ln(-4n))=ln(nA)
Step 8.6.6.6.7.6.6.6.6.9.9.5
Expand the left side.
Step 8.6.6.6.7.6.6.6.6.9.9.5.1
Expand ln(enln(-4n)-ln(-4n)) by moving nln(-4n)-ln(-4n) outside the logarithm.
(nln(-4n)-ln(-4n))ln(e)=ln(nA)
Step 8.6.6.6.7.6.6.6.6.9.9.5.2
The natural logarithm of e is 1.
(nln(-4n)-ln(-4n))⋅1=ln(nA)
Step 8.6.6.6.7.6.6.6.6.9.9.5.3
Multiply nln(-4n)-ln(-4n) by 1.
nln(-4n)-ln(-4n)=ln(nA)
nln(-4n)-ln(-4n)=ln(nA)
Step 8.6.6.6.7.6.6.6.6.9.9.6
Subtract ln(nA) from both sides of the equation.
nln(-4n)-ln(-4n)-ln(nA)=0
Step 8.6.6.6.7.6.6.6.6.9.9.7
To solve for n, rewrite the equation using properties of logarithms.
eln(nA)=enln(-4n)-ln(-4n)
Step 8.6.6.6.7.6.6.6.6.9.9.8
Rewrite ln(nA)=nln(-4n)-ln(-4n) in exponential form using the definition of a logarithm. If x and b are positive real numbers and b≠1, then logb(x)=y is equivalent to by=x.
enln(-4n)-ln(-4n)=nA
Step 8.6.6.6.7.6.6.6.6.9.9.9
Solve for n.
Step 8.6.6.6.7.6.6.6.6.9.9.9.1
Subtract nA from both sides of the equation.
enln(-4n)-ln(-4n)-nA=0
Step 8.6.6.6.7.6.6.6.6.9.9.9.2
Move all the terms containing a logarithm to the left side of the equation.
enln(-4n)-ln(-4n)=nA+0
Step 8.6.6.6.7.6.6.6.6.9.9.9.3
Add nA and 0.
enln(-4n)-ln(-4n)=nA
Step 8.6.6.6.7.6.6.6.6.9.9.9.4
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(enln(-4n)-ln(-4n))=ln(nA)
Step 8.6.6.6.7.6.6.6.6.9.9.9.5
Expand the left side.
Step 8.6.6.6.7.6.6.6.6.9.9.9.5.1
Expand ln(enln(-4n)-ln(-4n)) by moving nln(-4n)-ln(-4n) outside the logarithm.
(nln(-4n)-ln(-4n))ln(e)=ln(nA)
Step 8.6.6.6.7.6.6.6.6.9.9.9.5.2
The natural logarithm of e is 1.
(nln(-4n)-ln(-4n))⋅1=ln(nA)
Step 8.6.6.6.7.6.6.6.6.9.9.9.5.3
Multiply nln(-4n)-ln(-4n) by 1.
nln(-4n)-ln(-4n)=ln(nA)
nln(-4n)-ln(-4n)=ln(nA)
nln(-4n)-ln(-4n)=ln(nA)
nln(-4n)-ln(-4n)=ln(nA)
nln(-4n)-ln(-4n)=ln(nA)
nln(-4n)-ln(-4n)=ln(nA)
nln(-4n)-ln(-4n)=ln(nA)
nln(-4n)-ln(-4n)=ln(nA)
nln(-4n)-ln(-4n)=ln(nA)
nln(-4n)-ln(-4n)=ln(nA)
Step 8.6.6.6.8
Expand the left side.
Step 8.6.6.6.8.1
Expand ln(enln(-4n)-ln(-4n)) by moving nln(-4n)-ln(-4n) outside the logarithm.
(nln(-4n)-ln(-4n))ln(e)=ln(An)
Step 8.6.6.6.8.2
The natural logarithm of e is 1.
(nln(-4n)-ln(-4n))⋅1=ln(An)
Step 8.6.6.6.8.3
Multiply nln(-4n)-ln(-4n) by 1.
nln(-4n)-ln(-4n)=ln(An)
nln(-4n)-ln(-4n)=ln(An)
nln(-4n)-ln(-4n)=ln(An)
nln(-4n)-ln(-4n)=ln(An)
nln(-4n)-ln(-4n)=ln(An)
nln(-4n)-ln(-4n)=ln(An)
Step 9
Expand ln((-4n)n-1) by moving n-1 outside the logarithm.
(n-1)ln(-4n)=ln(An)