Basic Math Examples

Solve for p (-(p*1)/2*(32-p^2)^(-1/2))/(35 square root of 35-p^2)=2
-p12(32-p2)-123535-p2=2p12(32p2)123535p2=2
Step 1
Cross multiply.
Tap for more steps...
Step 1.1
Cross multiply by setting the product of the numerator of the right side and the denominator of the left side equal to the product of the numerator of the left side and the denominator of the right side.
2(3535-p2)=-p12(32-p2)-122(3535p2)=p12(32p2)12
Step 1.2
Simplify the left side.
Tap for more steps...
Step 1.2.1
Simplify 2(3535-p2)2(3535p2).
Tap for more steps...
Step 1.2.1.1
Remove parentheses.
2(3535-p2)=-p12(32-p2)-122(3535p2)=p12(32p2)12
Step 1.2.1.2
Multiply 3535 by 22.
7035-p2=-p12(32-p2)-127035p2=p12(32p2)12
7035-p2=-p12(32-p2)-12
7035-p2=-p12(32-p2)-12
Step 1.3
Simplify the right side.
Tap for more steps...
Step 1.3.1
Simplify -p12(32-p2)-12.
Tap for more steps...
Step 1.3.1.1
Multiply p by 1.
7035-p2=-p2(32-p2)-12
Step 1.3.1.2
Rewrite the expression using the negative exponent rule b-n=1bn.
7035-p2=-p21(32-p2)12
Step 1.3.1.3
Multiply 1(32-p2)12 by p2.
7035-p2=-p(32-p2)122
Step 1.3.1.4
Move 2 to the left of (32-p2)12.
7035-p2=-p2(32-p2)12
7035-p2=-p2(32-p2)12
7035-p2=-p2(32-p2)12
7035-p2=-p2(32-p2)12
Step 2
To remove the radical on the left side of the equation, square both sides of the equation.
(7035-p2)2=(-p2(32-p2)12)2
Step 3
Simplify each side of the equation.
Tap for more steps...
Step 3.1
Use nax=axn to rewrite 35-p2 as (35-p2)12.
(70(35-p2)12)2=(-p2(32-p2)12)2
Step 3.2
Simplify the left side.
Tap for more steps...
Step 3.2.1
Simplify (70(35-p2)12)2.
Tap for more steps...
Step 3.2.1.1
Apply the product rule to 70(35-p2)12.
702((35-p2)12)2=(-p2(32-p2)12)2
Step 3.2.1.2
Raise 70 to the power of 2.
4900((35-p2)12)2=(-p2(32-p2)12)2
Step 3.2.1.3
Multiply the exponents in ((35-p2)12)2.
Tap for more steps...
Step 3.2.1.3.1
Apply the power rule and multiply exponents, (am)n=amn.
4900(35-p2)122=(-p2(32-p2)12)2
Step 3.2.1.3.2
Cancel the common factor of 2.
Tap for more steps...
Step 3.2.1.3.2.1
Cancel the common factor.
4900(35-p2)122=(-p2(32-p2)12)2
Step 3.2.1.3.2.2
Rewrite the expression.
4900(35-p2)1=(-p2(32-p2)12)2
4900(35-p2)1=(-p2(32-p2)12)2
4900(35-p2)1=(-p2(32-p2)12)2
Step 3.2.1.4
Simplify.
4900(35-p2)=(-p2(32-p2)12)2
Step 3.2.1.5
Apply the distributive property.
490035+4900(-p2)=(-p2(32-p2)12)2
Step 3.2.1.6
Multiply.
Tap for more steps...
Step 3.2.1.6.1
Multiply 4900 by 35.
171500+4900(-p2)=(-p2(32-p2)12)2
Step 3.2.1.6.2
Multiply -1 by 4900.
171500-4900p2=(-p2(32-p2)12)2
171500-4900p2=(-p2(32-p2)12)2
171500-4900p2=(-p2(32-p2)12)2
171500-4900p2=(-p2(32-p2)12)2
Step 3.3
Simplify the right side.
Tap for more steps...
Step 3.3.1
Simplify (-p2(32-p2)12)2.
Tap for more steps...
Step 3.3.1.1
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 3.3.1.1.1
Apply the product rule to -p2(32-p2)12.
171500-4900p2=(-1)2(p2(32-p2)12)2
Step 3.3.1.1.2
Apply the product rule to p2(32-p2)12.
171500-4900p2=(-1)2p2(2(32-p2)12)2
Step 3.3.1.1.3
Apply the product rule to 2(32-p2)12.
171500-4900p2=(-1)2p222((32-p2)12)2
171500-4900p2=(-1)2p222((32-p2)12)2
Step 3.3.1.2
Simplify the expression.
Tap for more steps...
Step 3.3.1.2.1
Raise -1 to the power of 2.
171500-4900p2=1p222((32-p2)12)2
Step 3.3.1.2.2
Multiply p222((32-p2)12)2 by 1.
171500-4900p2=p222((32-p2)12)2
171500-4900p2=p222((32-p2)12)2
Step 3.3.1.3
Simplify the denominator.
Tap for more steps...
Step 3.3.1.3.1
Raise 2 to the power of 2.
171500-4900p2=p24((32-p2)12)2
Step 3.3.1.3.2
Multiply the exponents in ((32-p2)12)2.
Tap for more steps...
Step 3.3.1.3.2.1
Apply the power rule and multiply exponents, (am)n=amn.
171500-4900p2=p24(32-p2)122
Step 3.3.1.3.2.2
Cancel the common factor of 2.
Tap for more steps...
Step 3.3.1.3.2.2.1
Cancel the common factor.
171500-4900p2=p24(32-p2)122
Step 3.3.1.3.2.2.2
Rewrite the expression.
171500-4900p2=p24(32-p2)1
171500-4900p2=p24(32-p2)1
171500-4900p2=p24(32-p2)1
Step 3.3.1.3.3
Simplify.
171500-4900p2=p24(32-p2)
171500-4900p2=p24(32-p2)
171500-4900p2=p24(32-p2)
171500-4900p2=p24(32-p2)
171500-4900p2=p24(32-p2)
Step 4
Solve for p.
Tap for more steps...
Step 4.1
Subtract 171500 from both sides of the equation.
-4900p2=p24(32-p2)-171500
Step 4.2
Find the LCD of the terms in the equation.
Tap for more steps...
Step 4.2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
1,4(32-p2),1
Step 4.2.2
The LCM of one and any expression is the expression.
4(32-p2)
4(32-p2)
Step 4.3
Multiply each term in -4900p2=p24(32-p2)-171500 by 4(32-p2) to eliminate the fractions.
Tap for more steps...
Step 4.3.1
Multiply each term in -4900p2=p24(32-p2)-171500 by 4(32-p2).
-4900p2(4(32-p2))=p24(32-p2)(4(32-p2))-171500(4(32-p2))
Step 4.3.2
Simplify the left side.
Tap for more steps...
Step 4.3.2.1
Simplify by multiplying through.
Tap for more steps...
Step 4.3.2.1.1
Apply the distributive property.
-4900p2(432+4(-p2))=p24(32-p2)(4(32-p2))-171500(4(32-p2))
Step 4.3.2.1.2
Multiply.
Tap for more steps...
Step 4.3.2.1.2.1
Multiply 4 by 32.
-4900p2(128+4(-p2))=p24(32-p2)(4(32-p2))-171500(4(32-p2))
Step 4.3.2.1.2.2
Multiply -1 by 4.
-4900p2(128-4p2)=p24(32-p2)(4(32-p2))-171500(4(32-p2))
-4900p2(128-4p2)=p24(32-p2)(4(32-p2))-171500(4(32-p2))
Step 4.3.2.1.3
Apply the distributive property.
-4900p2128-4900p2(-4p2)=p24(32-p2)(4(32-p2))-171500(4(32-p2))
Step 4.3.2.1.4
Simplify the expression.
Tap for more steps...
Step 4.3.2.1.4.1
Multiply 128 by -4900.
-627200p2-4900p2(-4p2)=p24(32-p2)(4(32-p2))-171500(4(32-p2))
Step 4.3.2.1.4.2
Rewrite using the commutative property of multiplication.
-627200p2-4900-4p2p2=p24(32-p2)(4(32-p2))-171500(4(32-p2))
-627200p2-4900-4p2p2=p24(32-p2)(4(32-p2))-171500(4(32-p2))
-627200p2-4900-4p2p2=p24(32-p2)(4(32-p2))-171500(4(32-p2))
Step 4.3.2.2
Simplify each term.
Tap for more steps...
Step 4.3.2.2.1
Multiply p2 by p2 by adding the exponents.
Tap for more steps...
Step 4.3.2.2.1.1
Move p2.
-627200p2-4900-4(p2p2)=p24(32-p2)(4(32-p2))-171500(4(32-p2))
Step 4.3.2.2.1.2
Use the power rule aman=am+n to combine exponents.
-627200p2-4900-4p2+2=p24(32-p2)(4(32-p2))-171500(4(32-p2))
Step 4.3.2.2.1.3
Add 2 and 2.
-627200p2-4900-4p4=p24(32-p2)(4(32-p2))-171500(4(32-p2))
-627200p2-4900-4p4=p24(32-p2)(4(32-p2))-171500(4(32-p2))
Step 4.3.2.2.2
Multiply -4900 by -4.
-627200p2+19600p4=p24(32-p2)(4(32-p2))-171500(4(32-p2))
-627200p2+19600p4=p24(32-p2)(4(32-p2))-171500(4(32-p2))
-627200p2+19600p4=p24(32-p2)(4(32-p2))-171500(4(32-p2))
Step 4.3.3
Simplify the right side.
Tap for more steps...
Step 4.3.3.1
Simplify each term.
Tap for more steps...
Step 4.3.3.1.1
Rewrite using the commutative property of multiplication.
-627200p2+19600p4=4p24(32-p2)(32-p2)-171500(4(32-p2))
Step 4.3.3.1.2
Cancel the common factor of 4.
Tap for more steps...
Step 4.3.3.1.2.1
Cancel the common factor.
-627200p2+19600p4=4p24(32-p2)(32-p2)-171500(4(32-p2))
Step 4.3.3.1.2.2
Rewrite the expression.
-627200p2+19600p4=p232-p2(32-p2)-171500(4(32-p2))
-627200p2+19600p4=p232-p2(32-p2)-171500(4(32-p2))
Step 4.3.3.1.3
Cancel the common factor of 32-p2.
Tap for more steps...
Step 4.3.3.1.3.1
Cancel the common factor.
-627200p2+19600p4=p232-p2(32-p2)-171500(4(32-p2))
Step 4.3.3.1.3.2
Rewrite the expression.
-627200p2+19600p4=p2-171500(4(32-p2))
-627200p2+19600p4=p2-171500(4(32-p2))
Step 4.3.3.1.4
Apply the distributive property.
-627200p2+19600p4=p2-171500(432+4(-p2))
Step 4.3.3.1.5
Multiply 4 by 32.
-627200p2+19600p4=p2-171500(128+4(-p2))
Step 4.3.3.1.6
Multiply -1 by 4.
-627200p2+19600p4=p2-171500(128-4p2)
Step 4.3.3.1.7
Apply the distributive property.
-627200p2+19600p4=p2-171500128-171500(-4p2)
Step 4.3.3.1.8
Multiply -171500 by 128.
-627200p2+19600p4=p2-21952000-171500(-4p2)
Step 4.3.3.1.9
Multiply -4 by -171500.
-627200p2+19600p4=p2-21952000+686000p2
-627200p2+19600p4=p2-21952000+686000p2
Step 4.3.3.2
Add p2 and 686000p2.
-627200p2+19600p4=686001p2-21952000
-627200p2+19600p4=686001p2-21952000
-627200p2+19600p4=686001p2-21952000
Step 4.4
Solve the equation.
Tap for more steps...
Step 4.4.1
Move all the expressions to the left side of the equation.
Tap for more steps...
Step 4.4.1.1
Subtract 686001p2 from both sides of the equation.
-627200p2+19600p4-686001p2=-21952000
Step 4.4.1.2
Add 21952000 to both sides of the equation.
-627200p2+19600p4-686001p2+21952000=0
-627200p2+19600p4-686001p2+21952000=0
Step 4.4.2
Subtract 686001p2 from -627200p2.
19600p4-1313201p2+21952000=0
Step 4.4.3
Substitute u=p2 into the equation. This will make the quadratic formula easy to use.
19600u2-1313201u+21952000=0
u=p2
Step 4.4.4
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 4.4.5
Substitute the values a=19600, b=-1313201, and c=21952000 into the quadratic formula and solve for u.
1313201±(-1313201)2-4(1960021952000)219600
Step 4.4.6
Simplify.
Tap for more steps...
Step 4.4.6.1
Simplify the numerator.
Tap for more steps...
Step 4.4.6.1.1
Raise -1313201 to the power of 2.
u=1313201±1724496866401-41960021952000219600
Step 4.4.6.1.2
Multiply -41960021952000.
Tap for more steps...
Step 4.4.6.1.2.1
Multiply -4 by 19600.
u=1313201±1724496866401-7840021952000219600
Step 4.4.6.1.2.2
Multiply -78400 by 21952000.
u=1313201±1724496866401-1721036800000219600
u=1313201±1724496866401-1721036800000219600
Step 4.4.6.1.3
Subtract 1721036800000 from 1724496866401.
u=1313201±3460066401219600
u=1313201±3460066401219600
Step 4.4.6.2
Multiply 2 by 19600.
u=1313201±346006640139200
u=1313201±346006640139200
Step 4.4.7
The final answer is the combination of both solutions.
u=1313201+346006640139200,1313201-346006640139200
Step 4.4.8
Substitute the real value of u=p2 back into the solved equation.
p2=35.00059513
(p2)1=31.99945589
Step 4.4.9
Solve the first equation for p.
p2=35.00059513
Step 4.4.10
Solve the equation for p.
Tap for more steps...
Step 4.4.10.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
p=±35.00059513
Step 4.4.10.2
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 4.4.10.2.1
First, use the positive value of the ± to find the first solution.
p=35.00059513
Step 4.4.10.2.2
Next, use the negative value of the ± to find the second solution.
p=-35.00059513
Step 4.4.10.2.3
The complete solution is the result of both the positive and negative portions of the solution.
p=35.00059513,-35.00059513
p=35.00059513,-35.00059513
p=35.00059513,-35.00059513
Step 4.4.11
Solve the second equation for p.
(p2)1=31.99945589
Step 4.4.12
Solve the equation for p.
Tap for more steps...
Step 4.4.12.1
Remove parentheses.
p2=31.99945589
Step 4.4.12.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
p=±31.99945589
Step 4.4.12.3
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 4.4.12.3.1
First, use the positive value of the ± to find the first solution.
p=31.99945589
Step 4.4.12.3.2
Next, use the negative value of the ± to find the second solution.
p=-31.99945589
Step 4.4.12.3.3
The complete solution is the result of both the positive and negative portions of the solution.
p=31.99945589,-31.99945589
p=31.99945589,-31.99945589
p=31.99945589,-31.99945589
Step 4.4.13
The solution to 19600p4-1313201p2+21952000=0 is p=35.00059513,-35.00059513,31.99945589,-31.99945589.
p=35.00059513,-35.00059513,31.99945589,-31.99945589
p=35.00059513,-35.00059513,31.99945589,-31.99945589
p=35.00059513,-35.00059513,31.99945589,-31.99945589
Step 5
Exclude the solutions that do not make -p12(32-p2)-123535-p2=2 true.
p=-31.99945589
Step 6
The result can be shown in multiple forms.
Exact Form:
p=-31.99945589
Decimal Form:
p=-5.65680615
 [x2  12  π  xdx ]