Enter a problem...
Basic Math Examples
-p⋅12⋅(32-p2)-1235√35-p2=2−p⋅12⋅(32−p2)−1235√35−p2=2
Step 1
Step 1.1
Cross multiply by setting the product of the numerator of the right side and the denominator of the left side equal to the product of the numerator of the left side and the denominator of the right side.
2⋅(35√35-p2)=-p⋅12⋅(32-p2)-122⋅(35√35−p2)=−p⋅12⋅(32−p2)−12
Step 1.2
Simplify the left side.
Step 1.2.1
Simplify 2⋅(35√35-p2)2⋅(35√35−p2).
Step 1.2.1.1
Remove parentheses.
2⋅(35√35-p2)=-p⋅12⋅(32-p2)-122⋅(35√35−p2)=−p⋅12⋅(32−p2)−12
Step 1.2.1.2
Multiply 3535 by 22.
70√35-p2=-p⋅12⋅(32-p2)-1270√35−p2=−p⋅12⋅(32−p2)−12
70√35-p2=-p⋅12⋅(32-p2)-12
70√35-p2=-p⋅12⋅(32-p2)-12
Step 1.3
Simplify the right side.
Step 1.3.1
Simplify -p⋅12⋅(32-p2)-12.
Step 1.3.1.1
Multiply p by 1.
70√35-p2=-p2⋅(32-p2)-12
Step 1.3.1.2
Rewrite the expression using the negative exponent rule b-n=1bn.
70√35-p2=-p2⋅1(32-p2)12
Step 1.3.1.3
Multiply 1(32-p2)12 by p2.
70√35-p2=-p(32-p2)12⋅2
Step 1.3.1.4
Move 2 to the left of (32-p2)12.
70√35-p2=-p2(32-p2)12
70√35-p2=-p2(32-p2)12
70√35-p2=-p2(32-p2)12
70√35-p2=-p2(32-p2)12
Step 2
To remove the radical on the left side of the equation, square both sides of the equation.
(70√35-p2)2=(-p2(32-p2)12)2
Step 3
Step 3.1
Use n√ax=axn to rewrite √35-p2 as (35-p2)12.
(70(35-p2)12)2=(-p2(32-p2)12)2
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify (70(35-p2)12)2.
Step 3.2.1.1
Apply the product rule to 70(35-p2)12.
702((35-p2)12)2=(-p2(32-p2)12)2
Step 3.2.1.2
Raise 70 to the power of 2.
4900((35-p2)12)2=(-p2(32-p2)12)2
Step 3.2.1.3
Multiply the exponents in ((35-p2)12)2.
Step 3.2.1.3.1
Apply the power rule and multiply exponents, (am)n=amn.
4900(35-p2)12⋅2=(-p2(32-p2)12)2
Step 3.2.1.3.2
Cancel the common factor of 2.
Step 3.2.1.3.2.1
Cancel the common factor.
4900(35-p2)12⋅2=(-p2(32-p2)12)2
Step 3.2.1.3.2.2
Rewrite the expression.
4900(35-p2)1=(-p2(32-p2)12)2
4900(35-p2)1=(-p2(32-p2)12)2
4900(35-p2)1=(-p2(32-p2)12)2
Step 3.2.1.4
Simplify.
4900(35-p2)=(-p2(32-p2)12)2
Step 3.2.1.5
Apply the distributive property.
4900⋅35+4900(-p2)=(-p2(32-p2)12)2
Step 3.2.1.6
Multiply.
Step 3.2.1.6.1
Multiply 4900 by 35.
171500+4900(-p2)=(-p2(32-p2)12)2
Step 3.2.1.6.2
Multiply -1 by 4900.
171500-4900p2=(-p2(32-p2)12)2
171500-4900p2=(-p2(32-p2)12)2
171500-4900p2=(-p2(32-p2)12)2
171500-4900p2=(-p2(32-p2)12)2
Step 3.3
Simplify the right side.
Step 3.3.1
Simplify (-p2(32-p2)12)2.
Step 3.3.1.1
Use the power rule (ab)n=anbn to distribute the exponent.
Step 3.3.1.1.1
Apply the product rule to -p2(32-p2)12.
171500-4900p2=(-1)2(p2(32-p2)12)2
Step 3.3.1.1.2
Apply the product rule to p2(32-p2)12.
171500-4900p2=(-1)2p2(2(32-p2)12)2
Step 3.3.1.1.3
Apply the product rule to 2(32-p2)12.
171500-4900p2=(-1)2p222((32-p2)12)2
171500-4900p2=(-1)2p222((32-p2)12)2
Step 3.3.1.2
Simplify the expression.
Step 3.3.1.2.1
Raise -1 to the power of 2.
171500-4900p2=1p222((32-p2)12)2
Step 3.3.1.2.2
Multiply p222((32-p2)12)2 by 1.
171500-4900p2=p222((32-p2)12)2
171500-4900p2=p222((32-p2)12)2
Step 3.3.1.3
Simplify the denominator.
Step 3.3.1.3.1
Raise 2 to the power of 2.
171500-4900p2=p24((32-p2)12)2
Step 3.3.1.3.2
Multiply the exponents in ((32-p2)12)2.
Step 3.3.1.3.2.1
Apply the power rule and multiply exponents, (am)n=amn.
171500-4900p2=p24(32-p2)12⋅2
Step 3.3.1.3.2.2
Cancel the common factor of 2.
Step 3.3.1.3.2.2.1
Cancel the common factor.
171500-4900p2=p24(32-p2)12⋅2
Step 3.3.1.3.2.2.2
Rewrite the expression.
171500-4900p2=p24(32-p2)1
171500-4900p2=p24(32-p2)1
171500-4900p2=p24(32-p2)1
Step 3.3.1.3.3
Simplify.
171500-4900p2=p24(32-p2)
171500-4900p2=p24(32-p2)
171500-4900p2=p24(32-p2)
171500-4900p2=p24(32-p2)
171500-4900p2=p24(32-p2)
Step 4
Step 4.1
Subtract 171500 from both sides of the equation.
-4900p2=p24(32-p2)-171500
Step 4.2
Find the LCD of the terms in the equation.
Step 4.2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
1,4(32-p2),1
Step 4.2.2
The LCM of one and any expression is the expression.
4(32-p2)
4(32-p2)
Step 4.3
Multiply each term in -4900p2=p24(32-p2)-171500 by 4(32-p2) to eliminate the fractions.
Step 4.3.1
Multiply each term in -4900p2=p24(32-p2)-171500 by 4(32-p2).
-4900p2(4(32-p2))=p24(32-p2)(4(32-p2))-171500(4(32-p2))
Step 4.3.2
Simplify the left side.
Step 4.3.2.1
Simplify by multiplying through.
Step 4.3.2.1.1
Apply the distributive property.
-4900p2(4⋅32+4(-p2))=p24(32-p2)(4(32-p2))-171500(4(32-p2))
Step 4.3.2.1.2
Multiply.
Step 4.3.2.1.2.1
Multiply 4 by 32.
-4900p2(128+4(-p2))=p24(32-p2)(4(32-p2))-171500(4(32-p2))
Step 4.3.2.1.2.2
Multiply -1 by 4.
-4900p2(128-4p2)=p24(32-p2)(4(32-p2))-171500(4(32-p2))
-4900p2(128-4p2)=p24(32-p2)(4(32-p2))-171500(4(32-p2))
Step 4.3.2.1.3
Apply the distributive property.
-4900p2⋅128-4900p2(-4p2)=p24(32-p2)(4(32-p2))-171500(4(32-p2))
Step 4.3.2.1.4
Simplify the expression.
Step 4.3.2.1.4.1
Multiply 128 by -4900.
-627200p2-4900p2(-4p2)=p24(32-p2)(4(32-p2))-171500(4(32-p2))
Step 4.3.2.1.4.2
Rewrite using the commutative property of multiplication.
-627200p2-4900⋅-4p2p2=p24(32-p2)(4(32-p2))-171500(4(32-p2))
-627200p2-4900⋅-4p2p2=p24(32-p2)(4(32-p2))-171500(4(32-p2))
-627200p2-4900⋅-4p2p2=p24(32-p2)(4(32-p2))-171500(4(32-p2))
Step 4.3.2.2
Simplify each term.
Step 4.3.2.2.1
Multiply p2 by p2 by adding the exponents.
Step 4.3.2.2.1.1
Move p2.
-627200p2-4900⋅-4(p2p2)=p24(32-p2)(4(32-p2))-171500(4(32-p2))
Step 4.3.2.2.1.2
Use the power rule aman=am+n to combine exponents.
-627200p2-4900⋅-4p2+2=p24(32-p2)(4(32-p2))-171500(4(32-p2))
Step 4.3.2.2.1.3
Add 2 and 2.
-627200p2-4900⋅-4p4=p24(32-p2)(4(32-p2))-171500(4(32-p2))
-627200p2-4900⋅-4p4=p24(32-p2)(4(32-p2))-171500(4(32-p2))
Step 4.3.2.2.2
Multiply -4900 by -4.
-627200p2+19600p4=p24(32-p2)(4(32-p2))-171500(4(32-p2))
-627200p2+19600p4=p24(32-p2)(4(32-p2))-171500(4(32-p2))
-627200p2+19600p4=p24(32-p2)(4(32-p2))-171500(4(32-p2))
Step 4.3.3
Simplify the right side.
Step 4.3.3.1
Simplify each term.
Step 4.3.3.1.1
Rewrite using the commutative property of multiplication.
-627200p2+19600p4=4p24(32-p2)(32-p2)-171500(4(32-p2))
Step 4.3.3.1.2
Cancel the common factor of 4.
Step 4.3.3.1.2.1
Cancel the common factor.
-627200p2+19600p4=4p24(32-p2)(32-p2)-171500(4(32-p2))
Step 4.3.3.1.2.2
Rewrite the expression.
-627200p2+19600p4=p232-p2(32-p2)-171500(4(32-p2))
-627200p2+19600p4=p232-p2(32-p2)-171500(4(32-p2))
Step 4.3.3.1.3
Cancel the common factor of 32-p2.
Step 4.3.3.1.3.1
Cancel the common factor.
-627200p2+19600p4=p232-p2(32-p2)-171500(4(32-p2))
Step 4.3.3.1.3.2
Rewrite the expression.
-627200p2+19600p4=p2-171500(4(32-p2))
-627200p2+19600p4=p2-171500(4(32-p2))
Step 4.3.3.1.4
Apply the distributive property.
-627200p2+19600p4=p2-171500(4⋅32+4(-p2))
Step 4.3.3.1.5
Multiply 4 by 32.
-627200p2+19600p4=p2-171500(128+4(-p2))
Step 4.3.3.1.6
Multiply -1 by 4.
-627200p2+19600p4=p2-171500(128-4p2)
Step 4.3.3.1.7
Apply the distributive property.
-627200p2+19600p4=p2-171500⋅128-171500(-4p2)
Step 4.3.3.1.8
Multiply -171500 by 128.
-627200p2+19600p4=p2-21952000-171500(-4p2)
Step 4.3.3.1.9
Multiply -4 by -171500.
-627200p2+19600p4=p2-21952000+686000p2
-627200p2+19600p4=p2-21952000+686000p2
Step 4.3.3.2
Add p2 and 686000p2.
-627200p2+19600p4=686001p2-21952000
-627200p2+19600p4=686001p2-21952000
-627200p2+19600p4=686001p2-21952000
Step 4.4
Solve the equation.
Step 4.4.1
Move all the expressions to the left side of the equation.
Step 4.4.1.1
Subtract 686001p2 from both sides of the equation.
-627200p2+19600p4-686001p2=-21952000
Step 4.4.1.2
Add 21952000 to both sides of the equation.
-627200p2+19600p4-686001p2+21952000=0
-627200p2+19600p4-686001p2+21952000=0
Step 4.4.2
Subtract 686001p2 from -627200p2.
19600p4-1313201p2+21952000=0
Step 4.4.3
Substitute u=p2 into the equation. This will make the quadratic formula easy to use.
19600u2-1313201u+21952000=0
u=p2
Step 4.4.4
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 4.4.5
Substitute the values a=19600, b=-1313201, and c=21952000 into the quadratic formula and solve for u.
1313201±√(-1313201)2-4⋅(19600⋅21952000)2⋅19600
Step 4.4.6
Simplify.
Step 4.4.6.1
Simplify the numerator.
Step 4.4.6.1.1
Raise -1313201 to the power of 2.
u=1313201±√1724496866401-4⋅19600⋅219520002⋅19600
Step 4.4.6.1.2
Multiply -4⋅19600⋅21952000.
Step 4.4.6.1.2.1
Multiply -4 by 19600.
u=1313201±√1724496866401-78400⋅219520002⋅19600
Step 4.4.6.1.2.2
Multiply -78400 by 21952000.
u=1313201±√1724496866401-17210368000002⋅19600
u=1313201±√1724496866401-17210368000002⋅19600
Step 4.4.6.1.3
Subtract 1721036800000 from 1724496866401.
u=1313201±√34600664012⋅19600
u=1313201±√34600664012⋅19600
Step 4.4.6.2
Multiply 2 by 19600.
u=1313201±√346006640139200
u=1313201±√346006640139200
Step 4.4.7
The final answer is the combination of both solutions.
u=1313201+√346006640139200,1313201-√346006640139200
Step 4.4.8
Substitute the real value of u=p2 back into the solved equation.
p2=35.00059513
(p2)1=31.99945589
Step 4.4.9
Solve the first equation for p.
p2=35.00059513
Step 4.4.10
Solve the equation for p.
Step 4.4.10.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
p=±√35.00059513
Step 4.4.10.2
The complete solution is the result of both the positive and negative portions of the solution.
Step 4.4.10.2.1
First, use the positive value of the ± to find the first solution.
p=√35.00059513
Step 4.4.10.2.2
Next, use the negative value of the ± to find the second solution.
p=-√35.00059513
Step 4.4.10.2.3
The complete solution is the result of both the positive and negative portions of the solution.
p=√35.00059513,-√35.00059513
p=√35.00059513,-√35.00059513
p=√35.00059513,-√35.00059513
Step 4.4.11
Solve the second equation for p.
(p2)1=31.99945589
Step 4.4.12
Solve the equation for p.
Step 4.4.12.1
Remove parentheses.
p2=31.99945589
Step 4.4.12.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
p=±√31.99945589
Step 4.4.12.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 4.4.12.3.1
First, use the positive value of the ± to find the first solution.
p=√31.99945589
Step 4.4.12.3.2
Next, use the negative value of the ± to find the second solution.
p=-√31.99945589
Step 4.4.12.3.3
The complete solution is the result of both the positive and negative portions of the solution.
p=√31.99945589,-√31.99945589
p=√31.99945589,-√31.99945589
p=√31.99945589,-√31.99945589
Step 4.4.13
The solution to 19600p4-1313201p2+21952000=0 is p=√35.00059513,-√35.00059513,√31.99945589,-√31.99945589.
p=√35.00059513,-√35.00059513,√31.99945589,-√31.99945589
p=√35.00059513,-√35.00059513,√31.99945589,-√31.99945589
p=√35.00059513,-√35.00059513,√31.99945589,-√31.99945589
Step 5
Exclude the solutions that do not make -p⋅12⋅(32-p2)-1235√35-p2=2 true.
p=-√31.99945589
Step 6
The result can be shown in multiple forms.
Exact Form:
p=-√31.99945589
Decimal Form:
p=-5.65680615…