Basic Math Examples

Solve for Q Q^(1/2)=Q^2
Q12=Q2Q12=Q2
Step 1
Subtract Q2 from both sides of the equation.
Q12-Q2=0
Step 2
Find a common factor Q12 that is present in each term.
Q12-1(Q12)4
Step 3
Substitute u for Q12.
(u)-1(u)4=0
Step 4
Solve for u.
Tap for more steps...
Step 4.1
Rewrite -1u4 as -u4.
u-u4=0
Step 4.2
Factor the left side of the equation.
Tap for more steps...
Step 4.2.1
Factor u out of u-u4.
Tap for more steps...
Step 4.2.1.1
Raise u to the power of 1.
u-u4=0
Step 4.2.1.2
Factor u out of u1.
u1-u4=0
Step 4.2.1.3
Factor u out of -u4.
u1+u(-u3)=0
Step 4.2.1.4
Factor u out of u1+u(-u3).
u(1-u3)=0
u(1-u3)=0
Step 4.2.2
Rewrite 1 as 13.
u(13-u3)=0
Step 4.2.3
Since both terms are perfect cubes, factor using the difference of cubes formula, a3-b3=(a-b)(a2+ab+b2) where a=1 and b=u.
u((1-u)(12+1u+u2))=0
Step 4.2.4
Factor.
Tap for more steps...
Step 4.2.4.1
Simplify.
Tap for more steps...
Step 4.2.4.1.1
One to any power is one.
u((1-u)(1+1u+u2))=0
Step 4.2.4.1.2
Multiply u by 1.
u((1-u)(1+u+u2))=0
u((1-u)(1+u+u2))=0
Step 4.2.4.2
Remove unnecessary parentheses.
u(1-u)(1+u+u2)=0
u(1-u)(1+u+u2)=0
u(1-u)(1+u+u2)=0
Step 4.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
u=0
1-u=0
1+u+u2=0
Step 4.4
Set u equal to 0.
u=0
Step 4.5
Set 1-u equal to 0 and solve for u.
Tap for more steps...
Step 4.5.1
Set 1-u equal to 0.
1-u=0
Step 4.5.2
Solve 1-u=0 for u.
Tap for more steps...
Step 4.5.2.1
Subtract 1 from both sides of the equation.
-u=-1
Step 4.5.2.2
Divide each term in -u=-1 by -1 and simplify.
Tap for more steps...
Step 4.5.2.2.1
Divide each term in -u=-1 by -1.
-u-1=-1-1
Step 4.5.2.2.2
Simplify the left side.
Tap for more steps...
Step 4.5.2.2.2.1
Dividing two negative values results in a positive value.
u1=-1-1
Step 4.5.2.2.2.2
Divide u by 1.
u=-1-1
u=-1-1
Step 4.5.2.2.3
Simplify the right side.
Tap for more steps...
Step 4.5.2.2.3.1
Divide -1 by -1.
u=1
u=1
u=1
u=1
u=1
Step 4.6
Set 1+u+u2 equal to 0 and solve for u.
Tap for more steps...
Step 4.6.1
Set 1+u+u2 equal to 0.
1+u+u2=0
Step 4.6.2
Solve 1+u+u2=0 for u.
Tap for more steps...
Step 4.6.2.1
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 4.6.2.2
Substitute the values a=1, b=1, and c=1 into the quadratic formula and solve for u.
-1±12-4(11)21
Step 4.6.2.3
Simplify.
Tap for more steps...
Step 4.6.2.3.1
Simplify the numerator.
Tap for more steps...
Step 4.6.2.3.1.1
One to any power is one.
u=-1±1-41121
Step 4.6.2.3.1.2
Multiply -411.
Tap for more steps...
Step 4.6.2.3.1.2.1
Multiply -4 by 1.
u=-1±1-4121
Step 4.6.2.3.1.2.2
Multiply -4 by 1.
u=-1±1-421
u=-1±1-421
Step 4.6.2.3.1.3
Subtract 4 from 1.
u=-1±-321
Step 4.6.2.3.1.4
Rewrite -3 as -1(3).
u=-1±-1321
Step 4.6.2.3.1.5
Rewrite -1(3) as -13.
u=-1±-1321
Step 4.6.2.3.1.6
Rewrite -1 as i.
u=-1±i321
u=-1±i321
Step 4.6.2.3.2
Multiply 2 by 1.
u=-1±i32
u=-1±i32
Step 4.6.2.4
The final answer is the combination of both solutions.
u=-1-i32,-1+i32
u=-1-i32,-1+i32
u=-1-i32,-1+i32
Step 4.7
The final solution is all the values that make u(1-u)(1+u+u2)=0 true.
u=0,1,-1-i32,-1+i32
u=0,1,-1-i32,-1+i32
Step 5
Substitute Q for u.
Q12=0,1,-1-i32,-1+i32
Step 6
Solve for Q12=0 for Q.
Tap for more steps...
Step 6.1
Raise each side of the equation to the power of 2 to eliminate the fractional exponent on the left side.
(Q12)2=02
Step 6.2
Simplify the exponent.
Tap for more steps...
Step 6.2.1
Simplify the left side.
Tap for more steps...
Step 6.2.1.1
Simplify (Q12)2.
Tap for more steps...
Step 6.2.1.1.1
Multiply the exponents in (Q12)2.
Tap for more steps...
Step 6.2.1.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
Q122=02
Step 6.2.1.1.1.2
Cancel the common factor of 2.
Tap for more steps...
Step 6.2.1.1.1.2.1
Cancel the common factor.
Q122=02
Step 6.2.1.1.1.2.2
Rewrite the expression.
Q1=02
Q1=02
Q1=02
Step 6.2.1.1.2
Simplify.
Q=02
Q=02
Q=02
Step 6.2.2
Simplify the right side.
Tap for more steps...
Step 6.2.2.1
Raising 0 to any positive power yields 0.
Q=0
Q=0
Q=0
Q=0
Step 7
Solve for Q12=1 for Q.
Tap for more steps...
Step 7.1
Raise each side of the equation to the power of 2 to eliminate the fractional exponent on the left side.
(Q12)2=12
Step 7.2
Simplify the exponent.
Tap for more steps...
Step 7.2.1
Simplify the left side.
Tap for more steps...
Step 7.2.1.1
Simplify (Q12)2.
Tap for more steps...
Step 7.2.1.1.1
Multiply the exponents in (Q12)2.
Tap for more steps...
Step 7.2.1.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
Q122=12
Step 7.2.1.1.1.2
Cancel the common factor of 2.
Tap for more steps...
Step 7.2.1.1.1.2.1
Cancel the common factor.
Q122=12
Step 7.2.1.1.1.2.2
Rewrite the expression.
Q1=12
Q1=12
Q1=12
Step 7.2.1.1.2
Simplify.
Q=12
Q=12
Q=12
Step 7.2.2
Simplify the right side.
Tap for more steps...
Step 7.2.2.1
One to any power is one.
Q=1
Q=1
Q=1
Q=1
Step 8
Solve for Q12=-1-i32 for Q.
Tap for more steps...
Step 8.1
Raise each side of the equation to the power of 2 to eliminate the fractional exponent on the left side.
(Q12)2=(-1-i32)2
Step 8.2
Simplify the exponent.
Tap for more steps...
Step 8.2.1
Simplify the left side.
Tap for more steps...
Step 8.2.1.1
Simplify (Q12)2.
Tap for more steps...
Step 8.2.1.1.1
Multiply the exponents in (Q12)2.
Tap for more steps...
Step 8.2.1.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
Q122=(-1-i32)2
Step 8.2.1.1.1.2
Cancel the common factor of 2.
Tap for more steps...
Step 8.2.1.1.1.2.1
Cancel the common factor.
Q122=(-1-i32)2
Step 8.2.1.1.1.2.2
Rewrite the expression.
Q1=(-1-i32)2
Q1=(-1-i32)2
Q1=(-1-i32)2
Step 8.2.1.1.2
Simplify.
Q=(-1-i32)2
Q=(-1-i32)2
Q=(-1-i32)2
Step 8.2.2
Simplify the right side.
Tap for more steps...
Step 8.2.2.1
Simplify (-1-i32)2.
Tap for more steps...
Step 8.2.2.1.1
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 8.2.2.1.1.1
Apply the product rule to -1-i32.
Q=(-1)2(1-i32)2
Step 8.2.2.1.1.2
Apply the product rule to 1-i32.
Q=(-1)2(1-i3)222
Q=(-1)2(1-i3)222
Step 8.2.2.1.2
Simplify the expression.
Tap for more steps...
Step 8.2.2.1.2.1
Raise -1 to the power of 2.
Q=1(1-i3)222
Step 8.2.2.1.2.2
Multiply (1-i3)222 by 1.
Q=(1-i3)222
Step 8.2.2.1.2.3
Raise 2 to the power of 2.
Q=(1-i3)24
Step 8.2.2.1.2.4
Rewrite (1-i3)2 as (1-i3)(1-i3).
Q=(1-i3)(1-i3)4
Q=(1-i3)(1-i3)4
Step 8.2.2.1.3
Expand (1-i3)(1-i3) using the FOIL Method.
Tap for more steps...
Step 8.2.2.1.3.1
Apply the distributive property.
Q=1(1-i3)-i3(1-i3)4
Step 8.2.2.1.3.2
Apply the distributive property.
Q=11+1(-i3)-i3(1-i3)4
Step 8.2.2.1.3.3
Apply the distributive property.
Q=11+1(-i3)-i31-i3(-i3)4
Q=11+1(-i3)-i31-i3(-i3)4
Step 8.2.2.1.4
Simplify and combine like terms.
Tap for more steps...
Step 8.2.2.1.4.1
Simplify each term.
Tap for more steps...
Step 8.2.2.1.4.1.1
Multiply 1 by 1.
Q=1+1(-i3)-i31-i3(-i3)4
Step 8.2.2.1.4.1.2
Multiply -i3 by 1.
Q=1-i3-i31-i3(-i3)4
Step 8.2.2.1.4.1.3
Multiply -1 by 1.
Q=1-i3-i3-i3(-i3)4
Step 8.2.2.1.4.1.4
Multiply -i3(-i3).
Tap for more steps...
Step 8.2.2.1.4.1.4.1
Multiply -1 by -1.
Q=1-i3-i3+1i3(i3)4
Step 8.2.2.1.4.1.4.2
Multiply 3 by 1.
Q=1-i3-i3+3i(i3)4
Step 8.2.2.1.4.1.4.3
Raise 3 to the power of 1.
Q=1-i3-i3+313ii4
Step 8.2.2.1.4.1.4.4
Raise 3 to the power of 1.
Q=1-i3-i3+3131ii4
Step 8.2.2.1.4.1.4.5
Use the power rule aman=am+n to combine exponents.
Q=1-i3-i3+31+1ii4
Step 8.2.2.1.4.1.4.6
Add 1 and 1.
Q=1-i3-i3+32ii4
Step 8.2.2.1.4.1.4.7
Raise i to the power of 1.
Q=1-i3-i3+32(i1i)4
Step 8.2.2.1.4.1.4.8
Raise i to the power of 1.
Q=1-i3-i3+32(i1i1)4
Step 8.2.2.1.4.1.4.9
Use the power rule aman=am+n to combine exponents.
Q=1-i3-i3+32i1+14
Step 8.2.2.1.4.1.4.10
Add 1 and 1.
Q=1-i3-i3+32i24
Q=1-i3-i3+32i24
Step 8.2.2.1.4.1.5
Rewrite 32 as 3.
Tap for more steps...
Step 8.2.2.1.4.1.5.1
Use nax=axn to rewrite 3 as 312.
Q=1-i3-i3+(312)2i24
Step 8.2.2.1.4.1.5.2
Apply the power rule and multiply exponents, (am)n=amn.
Q=1-i3-i3+3122i24
Step 8.2.2.1.4.1.5.3
Combine 12 and 2.
Q=1-i3-i3+322i24
Step 8.2.2.1.4.1.5.4
Cancel the common factor of 2.
Tap for more steps...
Step 8.2.2.1.4.1.5.4.1
Cancel the common factor.
Q=1-i3-i3+322i24
Step 8.2.2.1.4.1.5.4.2
Rewrite the expression.
Q=1-i3-i3+31i24
Q=1-i3-i3+31i24
Step 8.2.2.1.4.1.5.5
Evaluate the exponent.
Q=1-i3-i3+3i24
Q=1-i3-i3+3i24
Step 8.2.2.1.4.1.6
Rewrite i2 as -1.
Q=1-i3-i3+3-14
Step 8.2.2.1.4.1.7
Multiply 3 by -1.
Q=1-i3-i3-34
Q=1-i3-i3-34
Step 8.2.2.1.4.2
Subtract 3 from 1.
Q=-i3-i3-24
Step 8.2.2.1.4.3
Subtract i3 from -i3.
Q=-2i3-24
Q=-2i3-24
Step 8.2.2.1.5
Reorder -2i3 and -2.
Q=-2-2i34
Step 8.2.2.1.6
Cancel the common factor of -2-2i3 and 4.
Tap for more steps...
Step 8.2.2.1.6.1
Factor 2 out of -2.
Q=2(-1)-2i34
Step 8.2.2.1.6.2
Factor 2 out of -2i3.
Q=2(-1)+2(-i3)4
Step 8.2.2.1.6.3
Factor 2 out of 2(-1)+2(-i3).
Q=2(-1-i3)4
Step 8.2.2.1.6.4
Cancel the common factors.
Tap for more steps...
Step 8.2.2.1.6.4.1
Factor 2 out of 4.
Q=2(-1-i3)22
Step 8.2.2.1.6.4.2
Cancel the common factor.
Q=2(-1-i3)22
Step 8.2.2.1.6.4.3
Rewrite the expression.
Q=-1-i32
Q=-1-i32
Q=-1-i32
Step 8.2.2.1.7
Rewrite -1 as -1(1).
Q=-1(1)-i32
Step 8.2.2.1.8
Factor -1 out of -i3.
Q=-1(1)-(i3)2
Step 8.2.2.1.9
Factor -1 out of -1(1)-(i3).
Q=-1(1+i3)2
Step 8.2.2.1.10
Move the negative in front of the fraction.
Q=-1+i32
Q=-1+i32
Q=-1+i32
Q=-1+i32
Q=-1+i32
Step 9
Solve for Q12=-1+i32 for Q.
Tap for more steps...
Step 9.1
Raise each side of the equation to the power of 2 to eliminate the fractional exponent on the left side.
(Q12)2=(-1+i32)2
Step 9.2
Simplify the exponent.
Tap for more steps...
Step 9.2.1
Simplify the left side.
Tap for more steps...
Step 9.2.1.1
Simplify (Q12)2.
Tap for more steps...
Step 9.2.1.1.1
Multiply the exponents in (Q12)2.
Tap for more steps...
Step 9.2.1.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
Q122=(-1+i32)2
Step 9.2.1.1.1.2
Cancel the common factor of 2.
Tap for more steps...
Step 9.2.1.1.1.2.1
Cancel the common factor.
Q122=(-1+i32)2
Step 9.2.1.1.1.2.2
Rewrite the expression.
Q1=(-1+i32)2
Q1=(-1+i32)2
Q1=(-1+i32)2
Step 9.2.1.1.2
Simplify.
Q=(-1+i32)2
Q=(-1+i32)2
Q=(-1+i32)2
Step 9.2.2
Simplify the right side.
Tap for more steps...
Step 9.2.2.1
Simplify (-1+i32)2.
Tap for more steps...
Step 9.2.2.1.1
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 9.2.2.1.1.1
Apply the product rule to -1+i32.
Q=(-1)2(1+i32)2
Step 9.2.2.1.1.2
Apply the product rule to 1+i32.
Q=(-1)2(1+i3)222
Q=(-1)2(1+i3)222
Step 9.2.2.1.2
Simplify the expression.
Tap for more steps...
Step 9.2.2.1.2.1
Raise -1 to the power of 2.
Q=1(1+i3)222
Step 9.2.2.1.2.2
Multiply (1+i3)222 by 1.
Q=(1+i3)222
Step 9.2.2.1.2.3
Raise 2 to the power of 2.
Q=(1+i3)24
Step 9.2.2.1.2.4
Rewrite (1+i3)2 as (1+i3)(1+i3).
Q=(1+i3)(1+i3)4
Q=(1+i3)(1+i3)4
Step 9.2.2.1.3
Expand (1+i3)(1+i3) using the FOIL Method.
Tap for more steps...
Step 9.2.2.1.3.1
Apply the distributive property.
Q=1(1+i3)+i3(1+i3)4
Step 9.2.2.1.3.2
Apply the distributive property.
Q=11+1(i3)+i3(1+i3)4
Step 9.2.2.1.3.3
Apply the distributive property.
Q=11+1(i3)+i31+i3(i3)4
Q=11+1(i3)+i31+i3(i3)4
Step 9.2.2.1.4
Simplify and combine like terms.
Tap for more steps...
Step 9.2.2.1.4.1
Simplify each term.
Tap for more steps...
Step 9.2.2.1.4.1.1
Multiply 1 by 1.
Q=1+1(i3)+i31+i3(i3)4
Step 9.2.2.1.4.1.2
Multiply i3 by 1.
Q=1+i3+i31+i3(i3)4
Step 9.2.2.1.4.1.3
Multiply i by 1.
Q=1+i3+i3+i3(i3)4
Step 9.2.2.1.4.1.4
Multiply i3(i3).
Tap for more steps...
Step 9.2.2.1.4.1.4.1
Raise i to the power of 1.
Q=1+i3+i3+i1i334
Step 9.2.2.1.4.1.4.2
Raise i to the power of 1.
Q=1+i3+i3+i1i1334
Step 9.2.2.1.4.1.4.3
Use the power rule aman=am+n to combine exponents.
Q=1+i3+i3+i1+1334
Step 9.2.2.1.4.1.4.4
Add 1 and 1.
Q=1+i3+i3+i2334
Step 9.2.2.1.4.1.4.5
Raise 3 to the power of 1.
Q=1+i3+i3+i2(313)4
Step 9.2.2.1.4.1.4.6
Raise 3 to the power of 1.
Q=1+i3+i3+i2(3131)4
Step 9.2.2.1.4.1.4.7
Use the power rule aman=am+n to combine exponents.
Q=1+i3+i3+i231+14
Step 9.2.2.1.4.1.4.8
Add 1 and 1.
Q=1+i3+i3+i2324
Q=1+i3+i3+i2324
Step 9.2.2.1.4.1.5
Rewrite i2 as -1.
Q=1+i3+i3-1324
Step 9.2.2.1.4.1.6
Rewrite 32 as 3.
Tap for more steps...
Step 9.2.2.1.4.1.6.1
Use nax=axn to rewrite 3 as 312.
Q=1+i3+i3-1(312)24
Step 9.2.2.1.4.1.6.2
Apply the power rule and multiply exponents, (am)n=amn.
Q=1+i3+i3-131224
Step 9.2.2.1.4.1.6.3
Combine 12 and 2.
Q=1+i3+i3-13224
Step 9.2.2.1.4.1.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 9.2.2.1.4.1.6.4.1
Cancel the common factor.
Q=1+i3+i3-13224
Step 9.2.2.1.4.1.6.4.2
Rewrite the expression.
Q=1+i3+i3-1314
Q=1+i3+i3-1314
Step 9.2.2.1.4.1.6.5
Evaluate the exponent.
Q=1+i3+i3-134
Q=1+i3+i3-134
Step 9.2.2.1.4.1.7
Multiply -1 by 3.
Q=1+i3+i3-34
Q=1+i3+i3-34
Step 9.2.2.1.4.2
Subtract 3 from 1.
Q=i3+i3-24
Step 9.2.2.1.4.3
Add i3 and i3.
Q=2i3-24
Q=2i3-24
Step 9.2.2.1.5
Reorder 2i3 and -2.
Q=-2+2i34
Step 9.2.2.1.6
Cancel the common factor of -2+2i3 and 4.
Tap for more steps...
Step 9.2.2.1.6.1
Factor 2 out of -2.
Q=2-1+2i34
Step 9.2.2.1.6.2
Factor 2 out of 2i3.
Q=2-1+2(i3)4
Step 9.2.2.1.6.3
Factor 2 out of 2-1+2(i3).
Q=2(-1+i3)4
Step 9.2.2.1.6.4
Cancel the common factors.
Tap for more steps...
Step 9.2.2.1.6.4.1
Factor 2 out of 4.
Q=2(-1+i3)2(2)
Step 9.2.2.1.6.4.2
Cancel the common factor.
Q=2(-1+i3)22
Step 9.2.2.1.6.4.3
Rewrite the expression.
Q=-1+i32
Q=-1+i32
Q=-1+i32
Step 9.2.2.1.7
Rewrite -1 as -1(1).
Q=-1(1)+i32
Step 9.2.2.1.8
Factor -1 out of i3.
Q=-1(1)-(-i3)2
Step 9.2.2.1.9
Factor -1 out of -1(1)-(-i3).
Q=-1(1-i3)2
Step 9.2.2.1.10
Move the negative in front of the fraction.
Q=-1-i32
Q=-1-i32
Q=-1-i32
Q=-1-i32
Q=-1-i32
Step 10
List all of the solutions.
Q=0,1,-1+i32,-1-i32
 [x2  12  π  xdx ]