Enter a problem...
Basic Math Examples
Q12=Q2Q12=Q2
Step 1
Subtract Q2 from both sides of the equation.
Q12-Q2=0
Step 2
Find a common factor Q12 that is present in each term.
Q12-1(Q12)4
Step 3
Substitute u for Q12.
(u)-1(u)4=0
Step 4
Step 4.1
Rewrite -1u4 as -u4.
u-u4=0
Step 4.2
Factor the left side of the equation.
Step 4.2.1
Factor u out of u-u4.
Step 4.2.1.1
Raise u to the power of 1.
u-u4=0
Step 4.2.1.2
Factor u out of u1.
u⋅1-u4=0
Step 4.2.1.3
Factor u out of -u4.
u⋅1+u(-u3)=0
Step 4.2.1.4
Factor u out of u⋅1+u(-u3).
u(1-u3)=0
u(1-u3)=0
Step 4.2.2
Rewrite 1 as 13.
u(13-u3)=0
Step 4.2.3
Since both terms are perfect cubes, factor using the difference of cubes formula, a3-b3=(a-b)(a2+ab+b2) where a=1 and b=u.
u((1-u)(12+1u+u2))=0
Step 4.2.4
Factor.
Step 4.2.4.1
Simplify.
Step 4.2.4.1.1
One to any power is one.
u((1-u)(1+1u+u2))=0
Step 4.2.4.1.2
Multiply u by 1.
u((1-u)(1+u+u2))=0
u((1-u)(1+u+u2))=0
Step 4.2.4.2
Remove unnecessary parentheses.
u(1-u)(1+u+u2)=0
u(1-u)(1+u+u2)=0
u(1-u)(1+u+u2)=0
Step 4.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
u=0
1-u=0
1+u+u2=0
Step 4.4
Set u equal to 0.
u=0
Step 4.5
Set 1-u equal to 0 and solve for u.
Step 4.5.1
Set 1-u equal to 0.
1-u=0
Step 4.5.2
Solve 1-u=0 for u.
Step 4.5.2.1
Subtract 1 from both sides of the equation.
-u=-1
Step 4.5.2.2
Divide each term in -u=-1 by -1 and simplify.
Step 4.5.2.2.1
Divide each term in -u=-1 by -1.
-u-1=-1-1
Step 4.5.2.2.2
Simplify the left side.
Step 4.5.2.2.2.1
Dividing two negative values results in a positive value.
u1=-1-1
Step 4.5.2.2.2.2
Divide u by 1.
u=-1-1
u=-1-1
Step 4.5.2.2.3
Simplify the right side.
Step 4.5.2.2.3.1
Divide -1 by -1.
u=1
u=1
u=1
u=1
u=1
Step 4.6
Set 1+u+u2 equal to 0 and solve for u.
Step 4.6.1
Set 1+u+u2 equal to 0.
1+u+u2=0
Step 4.6.2
Solve 1+u+u2=0 for u.
Step 4.6.2.1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 4.6.2.2
Substitute the values a=1, b=1, and c=1 into the quadratic formula and solve for u.
-1±√12-4⋅(1⋅1)2⋅1
Step 4.6.2.3
Simplify.
Step 4.6.2.3.1
Simplify the numerator.
Step 4.6.2.3.1.1
One to any power is one.
u=-1±√1-4⋅1⋅12⋅1
Step 4.6.2.3.1.2
Multiply -4⋅1⋅1.
Step 4.6.2.3.1.2.1
Multiply -4 by 1.
u=-1±√1-4⋅12⋅1
Step 4.6.2.3.1.2.2
Multiply -4 by 1.
u=-1±√1-42⋅1
u=-1±√1-42⋅1
Step 4.6.2.3.1.3
Subtract 4 from 1.
u=-1±√-32⋅1
Step 4.6.2.3.1.4
Rewrite -3 as -1(3).
u=-1±√-1⋅32⋅1
Step 4.6.2.3.1.5
Rewrite √-1(3) as √-1⋅√3.
u=-1±√-1⋅√32⋅1
Step 4.6.2.3.1.6
Rewrite √-1 as i.
u=-1±i√32⋅1
u=-1±i√32⋅1
Step 4.6.2.3.2
Multiply 2 by 1.
u=-1±i√32
u=-1±i√32
Step 4.6.2.4
The final answer is the combination of both solutions.
u=-1-i√32,-1+i√32
u=-1-i√32,-1+i√32
u=-1-i√32,-1+i√32
Step 4.7
The final solution is all the values that make u(1-u)(1+u+u2)=0 true.
u=0,1,-1-i√32,-1+i√32
u=0,1,-1-i√32,-1+i√32
Step 5
Substitute Q for u.
Q12=0,1,-1-i√32,-1+i√32
Step 6
Step 6.1
Raise each side of the equation to the power of 2 to eliminate the fractional exponent on the left side.
(Q12)2=02
Step 6.2
Simplify the exponent.
Step 6.2.1
Simplify the left side.
Step 6.2.1.1
Simplify (Q12)2.
Step 6.2.1.1.1
Multiply the exponents in (Q12)2.
Step 6.2.1.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
Q12⋅2=02
Step 6.2.1.1.1.2
Cancel the common factor of 2.
Step 6.2.1.1.1.2.1
Cancel the common factor.
Q12⋅2=02
Step 6.2.1.1.1.2.2
Rewrite the expression.
Q1=02
Q1=02
Q1=02
Step 6.2.1.1.2
Simplify.
Q=02
Q=02
Q=02
Step 6.2.2
Simplify the right side.
Step 6.2.2.1
Raising 0 to any positive power yields 0.
Q=0
Q=0
Q=0
Q=0
Step 7
Step 7.1
Raise each side of the equation to the power of 2 to eliminate the fractional exponent on the left side.
(Q12)2=12
Step 7.2
Simplify the exponent.
Step 7.2.1
Simplify the left side.
Step 7.2.1.1
Simplify (Q12)2.
Step 7.2.1.1.1
Multiply the exponents in (Q12)2.
Step 7.2.1.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
Q12⋅2=12
Step 7.2.1.1.1.2
Cancel the common factor of 2.
Step 7.2.1.1.1.2.1
Cancel the common factor.
Q12⋅2=12
Step 7.2.1.1.1.2.2
Rewrite the expression.
Q1=12
Q1=12
Q1=12
Step 7.2.1.1.2
Simplify.
Q=12
Q=12
Q=12
Step 7.2.2
Simplify the right side.
Step 7.2.2.1
One to any power is one.
Q=1
Q=1
Q=1
Q=1
Step 8
Step 8.1
Raise each side of the equation to the power of 2 to eliminate the fractional exponent on the left side.
(Q12)2=(-1-i√32)2
Step 8.2
Simplify the exponent.
Step 8.2.1
Simplify the left side.
Step 8.2.1.1
Simplify (Q12)2.
Step 8.2.1.1.1
Multiply the exponents in (Q12)2.
Step 8.2.1.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
Q12⋅2=(-1-i√32)2
Step 8.2.1.1.1.2
Cancel the common factor of 2.
Step 8.2.1.1.1.2.1
Cancel the common factor.
Q12⋅2=(-1-i√32)2
Step 8.2.1.1.1.2.2
Rewrite the expression.
Q1=(-1-i√32)2
Q1=(-1-i√32)2
Q1=(-1-i√32)2
Step 8.2.1.1.2
Simplify.
Q=(-1-i√32)2
Q=(-1-i√32)2
Q=(-1-i√32)2
Step 8.2.2
Simplify the right side.
Step 8.2.2.1
Simplify (-1-i√32)2.
Step 8.2.2.1.1
Use the power rule (ab)n=anbn to distribute the exponent.
Step 8.2.2.1.1.1
Apply the product rule to -1-i√32.
Q=(-1)2(1-i√32)2
Step 8.2.2.1.1.2
Apply the product rule to 1-i√32.
Q=(-1)2(1-i√3)222
Q=(-1)2(1-i√3)222
Step 8.2.2.1.2
Simplify the expression.
Step 8.2.2.1.2.1
Raise -1 to the power of 2.
Q=1(1-i√3)222
Step 8.2.2.1.2.2
Multiply (1-i√3)222 by 1.
Q=(1-i√3)222
Step 8.2.2.1.2.3
Raise 2 to the power of 2.
Q=(1-i√3)24
Step 8.2.2.1.2.4
Rewrite (1-i√3)2 as (1-i√3)(1-i√3).
Q=(1-i√3)(1-i√3)4
Q=(1-i√3)(1-i√3)4
Step 8.2.2.1.3
Expand (1-i√3)(1-i√3) using the FOIL Method.
Step 8.2.2.1.3.1
Apply the distributive property.
Q=1(1-i√3)-i√3(1-i√3)4
Step 8.2.2.1.3.2
Apply the distributive property.
Q=1⋅1+1(-i√3)-i√3(1-i√3)4
Step 8.2.2.1.3.3
Apply the distributive property.
Q=1⋅1+1(-i√3)-i√3⋅1-i√3(-i√3)4
Q=1⋅1+1(-i√3)-i√3⋅1-i√3(-i√3)4
Step 8.2.2.1.4
Simplify and combine like terms.
Step 8.2.2.1.4.1
Simplify each term.
Step 8.2.2.1.4.1.1
Multiply 1 by 1.
Q=1+1(-i√3)-i√3⋅1-i√3(-i√3)4
Step 8.2.2.1.4.1.2
Multiply -i√3 by 1.
Q=1-i√3-i√3⋅1-i√3(-i√3)4
Step 8.2.2.1.4.1.3
Multiply -1 by 1.
Q=1-i√3-i√3-i√3(-i√3)4
Step 8.2.2.1.4.1.4
Multiply -i√3(-i√3).
Step 8.2.2.1.4.1.4.1
Multiply -1 by -1.
Q=1-i√3-i√3+1i√3(i√3)4
Step 8.2.2.1.4.1.4.2
Multiply √3 by 1.
Q=1-i√3-i√3+√3i(i√3)4
Step 8.2.2.1.4.1.4.3
Raise √3 to the power of 1.
Q=1-i√3-i√3+√31√3ii4
Step 8.2.2.1.4.1.4.4
Raise √3 to the power of 1.
Q=1-i√3-i√3+√31√31ii4
Step 8.2.2.1.4.1.4.5
Use the power rule aman=am+n to combine exponents.
Q=1-i√3-i√3+√31+1ii4
Step 8.2.2.1.4.1.4.6
Add 1 and 1.
Q=1-i√3-i√3+√32ii4
Step 8.2.2.1.4.1.4.7
Raise i to the power of 1.
Q=1-i√3-i√3+√32(i1i)4
Step 8.2.2.1.4.1.4.8
Raise i to the power of 1.
Q=1-i√3-i√3+√32(i1i1)4
Step 8.2.2.1.4.1.4.9
Use the power rule aman=am+n to combine exponents.
Q=1-i√3-i√3+√32i1+14
Step 8.2.2.1.4.1.4.10
Add 1 and 1.
Q=1-i√3-i√3+√32i24
Q=1-i√3-i√3+√32i24
Step 8.2.2.1.4.1.5
Rewrite √32 as 3.
Step 8.2.2.1.4.1.5.1
Use n√ax=axn to rewrite √3 as 312.
Q=1-i√3-i√3+(312)2i24
Step 8.2.2.1.4.1.5.2
Apply the power rule and multiply exponents, (am)n=amn.
Q=1-i√3-i√3+312⋅2i24
Step 8.2.2.1.4.1.5.3
Combine 12 and 2.
Q=1-i√3-i√3+322i24
Step 8.2.2.1.4.1.5.4
Cancel the common factor of 2.
Step 8.2.2.1.4.1.5.4.1
Cancel the common factor.
Q=1-i√3-i√3+322i24
Step 8.2.2.1.4.1.5.4.2
Rewrite the expression.
Q=1-i√3-i√3+31i24
Q=1-i√3-i√3+31i24
Step 8.2.2.1.4.1.5.5
Evaluate the exponent.
Q=1-i√3-i√3+3i24
Q=1-i√3-i√3+3i24
Step 8.2.2.1.4.1.6
Rewrite i2 as -1.
Q=1-i√3-i√3+3⋅-14
Step 8.2.2.1.4.1.7
Multiply 3 by -1.
Q=1-i√3-i√3-34
Q=1-i√3-i√3-34
Step 8.2.2.1.4.2
Subtract 3 from 1.
Q=-i√3-i√3-24
Step 8.2.2.1.4.3
Subtract i√3 from -i√3.
Q=-2i√3-24
Q=-2i√3-24
Step 8.2.2.1.5
Reorder -2i√3 and -2.
Q=-2-2i√34
Step 8.2.2.1.6
Cancel the common factor of -2-2i√3 and 4.
Step 8.2.2.1.6.1
Factor 2 out of -2.
Q=2(-1)-2i√34
Step 8.2.2.1.6.2
Factor 2 out of -2i√3.
Q=2(-1)+2(-i√3)4
Step 8.2.2.1.6.3
Factor 2 out of 2(-1)+2(-i√3).
Q=2(-1-i√3)4
Step 8.2.2.1.6.4
Cancel the common factors.
Step 8.2.2.1.6.4.1
Factor 2 out of 4.
Q=2(-1-i√3)2⋅2
Step 8.2.2.1.6.4.2
Cancel the common factor.
Q=2(-1-i√3)2⋅2
Step 8.2.2.1.6.4.3
Rewrite the expression.
Q=-1-i√32
Q=-1-i√32
Q=-1-i√32
Step 8.2.2.1.7
Rewrite -1 as -1(1).
Q=-1(1)-i√32
Step 8.2.2.1.8
Factor -1 out of -i√3.
Q=-1(1)-(i√3)2
Step 8.2.2.1.9
Factor -1 out of -1(1)-(i√3).
Q=-1(1+i√3)2
Step 8.2.2.1.10
Move the negative in front of the fraction.
Q=-1+i√32
Q=-1+i√32
Q=-1+i√32
Q=-1+i√32
Q=-1+i√32
Step 9
Step 9.1
Raise each side of the equation to the power of 2 to eliminate the fractional exponent on the left side.
(Q12)2=(-1+i√32)2
Step 9.2
Simplify the exponent.
Step 9.2.1
Simplify the left side.
Step 9.2.1.1
Simplify (Q12)2.
Step 9.2.1.1.1
Multiply the exponents in (Q12)2.
Step 9.2.1.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
Q12⋅2=(-1+i√32)2
Step 9.2.1.1.1.2
Cancel the common factor of 2.
Step 9.2.1.1.1.2.1
Cancel the common factor.
Q12⋅2=(-1+i√32)2
Step 9.2.1.1.1.2.2
Rewrite the expression.
Q1=(-1+i√32)2
Q1=(-1+i√32)2
Q1=(-1+i√32)2
Step 9.2.1.1.2
Simplify.
Q=(-1+i√32)2
Q=(-1+i√32)2
Q=(-1+i√32)2
Step 9.2.2
Simplify the right side.
Step 9.2.2.1
Simplify (-1+i√32)2.
Step 9.2.2.1.1
Use the power rule (ab)n=anbn to distribute the exponent.
Step 9.2.2.1.1.1
Apply the product rule to -1+i√32.
Q=(-1)2(1+i√32)2
Step 9.2.2.1.1.2
Apply the product rule to 1+i√32.
Q=(-1)2(1+i√3)222
Q=(-1)2(1+i√3)222
Step 9.2.2.1.2
Simplify the expression.
Step 9.2.2.1.2.1
Raise -1 to the power of 2.
Q=1(1+i√3)222
Step 9.2.2.1.2.2
Multiply (1+i√3)222 by 1.
Q=(1+i√3)222
Step 9.2.2.1.2.3
Raise 2 to the power of 2.
Q=(1+i√3)24
Step 9.2.2.1.2.4
Rewrite (1+i√3)2 as (1+i√3)(1+i√3).
Q=(1+i√3)(1+i√3)4
Q=(1+i√3)(1+i√3)4
Step 9.2.2.1.3
Expand (1+i√3)(1+i√3) using the FOIL Method.
Step 9.2.2.1.3.1
Apply the distributive property.
Q=1(1+i√3)+i√3(1+i√3)4
Step 9.2.2.1.3.2
Apply the distributive property.
Q=1⋅1+1(i√3)+i√3(1+i√3)4
Step 9.2.2.1.3.3
Apply the distributive property.
Q=1⋅1+1(i√3)+i√3⋅1+i√3(i√3)4
Q=1⋅1+1(i√3)+i√3⋅1+i√3(i√3)4
Step 9.2.2.1.4
Simplify and combine like terms.
Step 9.2.2.1.4.1
Simplify each term.
Step 9.2.2.1.4.1.1
Multiply 1 by 1.
Q=1+1(i√3)+i√3⋅1+i√3(i√3)4
Step 9.2.2.1.4.1.2
Multiply i√3 by 1.
Q=1+i√3+i√3⋅1+i√3(i√3)4
Step 9.2.2.1.4.1.3
Multiply i by 1.
Q=1+i√3+i√3+i√3(i√3)4
Step 9.2.2.1.4.1.4
Multiply i√3(i√3).
Step 9.2.2.1.4.1.4.1
Raise i to the power of 1.
Q=1+i√3+i√3+i1i√3√34
Step 9.2.2.1.4.1.4.2
Raise i to the power of 1.
Q=1+i√3+i√3+i1i1√3√34
Step 9.2.2.1.4.1.4.3
Use the power rule aman=am+n to combine exponents.
Q=1+i√3+i√3+i1+1√3√34
Step 9.2.2.1.4.1.4.4
Add 1 and 1.
Q=1+i√3+i√3+i2√3√34
Step 9.2.2.1.4.1.4.5
Raise √3 to the power of 1.
Q=1+i√3+i√3+i2(√31√3)4
Step 9.2.2.1.4.1.4.6
Raise √3 to the power of 1.
Q=1+i√3+i√3+i2(√31√31)4
Step 9.2.2.1.4.1.4.7
Use the power rule aman=am+n to combine exponents.
Q=1+i√3+i√3+i2√31+14
Step 9.2.2.1.4.1.4.8
Add 1 and 1.
Q=1+i√3+i√3+i2√324
Q=1+i√3+i√3+i2√324
Step 9.2.2.1.4.1.5
Rewrite i2 as -1.
Q=1+i√3+i√3-1√324
Step 9.2.2.1.4.1.6
Rewrite √32 as 3.
Step 9.2.2.1.4.1.6.1
Use n√ax=axn to rewrite √3 as 312.
Q=1+i√3+i√3-1(312)24
Step 9.2.2.1.4.1.6.2
Apply the power rule and multiply exponents, (am)n=amn.
Q=1+i√3+i√3-1⋅312⋅24
Step 9.2.2.1.4.1.6.3
Combine 12 and 2.
Q=1+i√3+i√3-1⋅3224
Step 9.2.2.1.4.1.6.4
Cancel the common factor of 2.
Step 9.2.2.1.4.1.6.4.1
Cancel the common factor.
Q=1+i√3+i√3-1⋅3224
Step 9.2.2.1.4.1.6.4.2
Rewrite the expression.
Q=1+i√3+i√3-1⋅314
Q=1+i√3+i√3-1⋅314
Step 9.2.2.1.4.1.6.5
Evaluate the exponent.
Q=1+i√3+i√3-1⋅34
Q=1+i√3+i√3-1⋅34
Step 9.2.2.1.4.1.7
Multiply -1 by 3.
Q=1+i√3+i√3-34
Q=1+i√3+i√3-34
Step 9.2.2.1.4.2
Subtract 3 from 1.
Q=i√3+i√3-24
Step 9.2.2.1.4.3
Add i√3 and i√3.
Q=2i√3-24
Q=2i√3-24
Step 9.2.2.1.5
Reorder 2i√3 and -2.
Q=-2+2i√34
Step 9.2.2.1.6
Cancel the common factor of -2+2i√3 and 4.
Step 9.2.2.1.6.1
Factor 2 out of -2.
Q=2⋅-1+2i√34
Step 9.2.2.1.6.2
Factor 2 out of 2i√3.
Q=2⋅-1+2(i√3)4
Step 9.2.2.1.6.3
Factor 2 out of 2⋅-1+2(i√3).
Q=2⋅(-1+i√3)4
Step 9.2.2.1.6.4
Cancel the common factors.
Step 9.2.2.1.6.4.1
Factor 2 out of 4.
Q=2⋅(-1+i√3)2(2)
Step 9.2.2.1.6.4.2
Cancel the common factor.
Q=2⋅(-1+i√3)2⋅2
Step 9.2.2.1.6.4.3
Rewrite the expression.
Q=-1+i√32
Q=-1+i√32
Q=-1+i√32
Step 9.2.2.1.7
Rewrite -1 as -1(1).
Q=-1(1)+i√32
Step 9.2.2.1.8
Factor -1 out of i√3.
Q=-1(1)-(-i√3)2
Step 9.2.2.1.9
Factor -1 out of -1(1)-(-i√3).
Q=-1(1-i√3)2
Step 9.2.2.1.10
Move the negative in front of the fraction.
Q=-1-i√32
Q=-1-i√32
Q=-1-i√32
Q=-1-i√32
Q=-1-i√32
Step 10
List all of the solutions.
Q=0,1,-1+i√32,-1-i√32