Basic Math Examples

Solve for q a^(q-r)*b^(r-p)*c^(p-q)=1
aq-rbr-pcp-q=1aqrbrpcpq=1
Step 1
Divide each term in aq-rbr-pcp-q=1 by br-p and simplify.
Tap for more steps...
Step 1.1
Divide each term in aq-rbr-pcp-q=1 by br-p.
aq-rbr-pcp-qbr-p=1br-p
Step 1.2
Simplify the left side.
Tap for more steps...
Step 1.2.1
Cancel the common factor of br-p.
Tap for more steps...
Step 1.2.1.1
Cancel the common factor.
aq-rbr-pcp-qbr-p=1br-p
Step 1.2.1.2
Divide aq-rcp-q by 1.
aq-rcp-q=1br-p
aq-rcp-q=1br-p
aq-rcp-q=1br-p
aq-rcp-q=1br-p
Step 2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(aq-rcp-q)=ln(1br-p)
Step 3
Expand the left side.
Tap for more steps...
Step 3.1
Rewrite ln(aq-rcp-q) as ln(aq-r)+ln(cp-q).
ln(aq-r)+ln(cp-q)=ln(1br-p)
Step 3.2
Expand ln(aq-r) by moving q-r outside the logarithm.
(q-r)ln(a)+ln(cp-q)=ln(1br-p)
Step 3.3
Expand ln(cp-q) by moving p-q outside the logarithm.
(q-r)ln(a)+(p-q)ln(c)=ln(1br-p)
(q-r)ln(a)+(p-q)ln(c)=ln(1br-p)
Step 4
Expand the right side.
Tap for more steps...
Step 4.1
Rewrite ln(1br-p) as ln(1)-ln(br-p).
(q-r)ln(a)+(p-q)ln(c)=ln(1)-ln(br-p)
Step 4.2
Expand ln(br-p) by moving r-p outside the logarithm.
(q-r)ln(a)+(p-q)ln(c)=ln(1)-((r-p)ln(b))
Step 4.3
The natural logarithm of 1 is 0.
(q-r)ln(a)+(p-q)ln(c)=0-((r-p)ln(b))
Step 4.4
Subtract (r-p)ln(b) from 0.
(q-r)ln(a)+(p-q)ln(c)=-((r-p)ln(b))
Step 4.5
Remove parentheses.
(q-r)ln(a)+(p-q)ln(c)=-(r-p)ln(b)
(q-r)ln(a)+(p-q)ln(c)=-(r-p)ln(b)
Step 5
Simplify the left side.
Tap for more steps...
Step 5.1
Simplify each term.
Tap for more steps...
Step 5.1.1
Apply the distributive property.
qln(a)-rln(a)+(p-q)ln(c)=-(r-p)ln(b)
Step 5.1.2
Apply the distributive property.
qln(a)-rln(a)+pln(c)-qln(c)=-(r-p)ln(b)
qln(a)-rln(a)+pln(c)-qln(c)=-(r-p)ln(b)
qln(a)-rln(a)+pln(c)-qln(c)=-(r-p)ln(b)
Step 6
Simplify the right side.
Tap for more steps...
Step 6.1
Simplify -(r-p)ln(b).
Tap for more steps...
Step 6.1.1
Apply the distributive property.
qln(a)-rln(a)+pln(c)-qln(c)=(-r--p)ln(b)
Step 6.1.2
Multiply --p.
Tap for more steps...
Step 6.1.2.1
Multiply -1 by -1.
qln(a)-rln(a)+pln(c)-qln(c)=(-r+1p)ln(b)
Step 6.1.2.2
Multiply p by 1.
qln(a)-rln(a)+pln(c)-qln(c)=(-r+p)ln(b)
qln(a)-rln(a)+pln(c)-qln(c)=(-r+p)ln(b)
Step 6.1.3
Apply the distributive property.
qln(a)-rln(a)+pln(c)-qln(c)=-rln(b)+pln(b)
qln(a)-rln(a)+pln(c)-qln(c)=-rln(b)+pln(b)
qln(a)-rln(a)+pln(c)-qln(c)=-rln(b)+pln(b)
Step 7
Simplify the left side.
Tap for more steps...
Step 7.1
Move -rln(a).
qln(a)+pln(c)-qln(c)-rln(a)=-rln(b)+pln(b)
Step 7.2
Reorder qln(a) and pln(c).
pln(c)+qln(a)-qln(c)-rln(a)=-rln(b)+pln(b)
pln(c)+qln(a)-qln(c)-rln(a)=-rln(b)+pln(b)
Step 8
Reorder -rln(b) and pln(b).
pln(c)+qln(a)-qln(c)-rln(a)=pln(b)-rln(b)
Step 9
Move all the terms containing a logarithm to the left side of the equation.
pln(c)+qln(a)-qln(c)-rln(a)-pln(b)+rln(b)=0
Step 10
Move all terms not containing q to the right side of the equation.
Tap for more steps...
Step 10.1
Subtract pln(c) from both sides of the equation.
qln(a)-qln(c)-rln(a)-pln(b)+rln(b)=-pln(c)
Step 10.2
Add rln(a) to both sides of the equation.
qln(a)-qln(c)-pln(b)+rln(b)=-pln(c)+rln(a)
Step 10.3
Add pln(b) to both sides of the equation.
qln(a)-qln(c)+rln(b)=-pln(c)+rln(a)+pln(b)
Step 10.4
Subtract rln(b) from both sides of the equation.
qln(a)-qln(c)=-pln(c)+rln(a)+pln(b)-rln(b)
qln(a)-qln(c)=-pln(c)+rln(a)+pln(b)-rln(b)
Step 11
Factor q out of qln(a)-qln(c).
Tap for more steps...
Step 11.1
Factor q out of qln(a).
q(ln(a))-qln(c)=-pln(c)+r(ln(a))+pln(b)-rln(b)
Step 11.2
Factor q out of -qln(c).
q(ln(a))+q(-1ln(c))=-pln(c)+r(ln(a))+pln(b)-rln(b)
Step 11.3
Factor q out of q(ln(a))+q(-1ln(c)).
q(ln(a)-1ln(c))=-pln(c)+rln(a)+pln(b)-rln(b)
q(ln(a)-1ln(c))=-pln(c)+rln(a)+pln(b)-rln(b)
Step 12
Rewrite -1ln(c) as -ln(c).
q(ln(a)-ln(c))=-pln(c)+rln(a)+pln(b)-rln(b)
Step 13
Divide each term in q(ln(a)-ln(c))=-pln(c)+rln(a)+pln(b)-rln(b) by ln(a)-ln(c) and simplify.
Tap for more steps...
Step 13.1
Divide each term in q(ln(a)-ln(c))=-pln(c)+rln(a)+pln(b)-rln(b) by ln(a)-ln(c).
q(ln(a)-ln(c))ln(a)-ln(c)=-pln(c)ln(a)-ln(c)+rln(a)ln(a)-ln(c)+pln(b)ln(a)-ln(c)+-rln(b)ln(a)-ln(c)
Step 13.2
Simplify the left side.
Tap for more steps...
Step 13.2.1
Cancel the common factor of ln(a)-ln(c).
Tap for more steps...
Step 13.2.1.1
Cancel the common factor.
q(ln(a)-ln(c))ln(a)-ln(c)=-pln(c)ln(a)-ln(c)+rln(a)ln(a)-ln(c)+pln(b)ln(a)-ln(c)+-rln(b)ln(a)-ln(c)
Step 13.2.1.2
Divide q by 1.
q=-pln(c)ln(a)-ln(c)+rln(a)ln(a)-ln(c)+pln(b)ln(a)-ln(c)+-rln(b)ln(a)-ln(c)
q=-pln(c)ln(a)-ln(c)+rln(a)ln(a)-ln(c)+pln(b)ln(a)-ln(c)+-rln(b)ln(a)-ln(c)
q=-pln(c)ln(a)-ln(c)+rln(a)ln(a)-ln(c)+pln(b)ln(a)-ln(c)+-rln(b)ln(a)-ln(c)
Step 13.3
Simplify the right side.
Tap for more steps...
Step 13.3.1
Simplify each term.
Tap for more steps...
Step 13.3.1.1
Move the negative in front of the fraction.
q=-pln(c)ln(a)-ln(c)+rln(a)ln(a)-ln(c)+pln(b)ln(a)-ln(c)+-rln(b)ln(a)-ln(c)
Step 13.3.1.2
Move the negative in front of the fraction.
q=-pln(c)ln(a)-ln(c)+rln(a)ln(a)-ln(c)+pln(b)ln(a)-ln(c)-rln(b)ln(a)-ln(c)
q=-pln(c)ln(a)-ln(c)+rln(a)ln(a)-ln(c)+pln(b)ln(a)-ln(c)-rln(b)ln(a)-ln(c)
Step 13.3.2
Simplify terms.
Tap for more steps...
Step 13.3.2.1
Combine the numerators over the common denominator.
q=-pln(c)+rln(a)ln(a)-ln(c)+pln(b)ln(a)-ln(c)-rln(b)ln(a)-ln(c)
Step 13.3.2.2
Combine the numerators over the common denominator.
q=-pln(c)+rln(a)+pln(b)ln(a)-ln(c)-rln(b)ln(a)-ln(c)
Step 13.3.2.3
Combine the numerators over the common denominator.
q=-pln(c)+rln(a)+pln(b)-rln(b)ln(a)-ln(c)
Step 13.3.2.4
Factor -1 out of -pln(c).
q=-(pln(c))+rln(a)+pln(b)-rln(b)ln(a)-ln(c)
Step 13.3.2.5
Factor -1 out of rln(a).
q=-(pln(c))-(-rln(a))+pln(b)-rln(b)ln(a)-ln(c)
Step 13.3.2.6
Factor -1 out of -(pln(c))-(-rln(a)).
q=-(pln(c)-rln(a))+pln(b)-rln(b)ln(a)-ln(c)
Step 13.3.2.7
Factor -1 out of pln(b).
q=-(pln(c)-rln(a))-(-pln(b))-rln(b)ln(a)-ln(c)
Step 13.3.2.8
Factor -1 out of -(pln(c)-rln(a))-(-pln(b)).
q=-(pln(c)-rln(a)-pln(b))-rln(b)ln(a)-ln(c)
Step 13.3.2.9
Factor -1 out of -rln(b).
q=-(pln(c)-rln(a)-pln(b))-(rln(b))ln(a)-ln(c)
Step 13.3.2.10
Factor -1 out of -(pln(c)-rln(a)-pln(b))-(rln(b)).
q=-(pln(c)-rln(a)-pln(b)+rln(b))ln(a)-ln(c)
Step 13.3.2.11
Simplify the expression.
Tap for more steps...
Step 13.3.2.11.1
Rewrite -(pln(c)-rln(a)-pln(b)+rln(b)) as -1(pln(c)-rln(a)-pln(b)+rln(b)).
q=-1(pln(c)-rln(a)-pln(b)+rln(b))ln(a)-ln(c)
Step 13.3.2.11.2
Move the negative in front of the fraction.
q=-pln(c)-rln(a)-pln(b)+rln(b)ln(a)-ln(c)
q=-pln(c)-rln(a)-pln(b)+rln(b)ln(a)-ln(c)
q=-pln(c)-rln(a)-pln(b)+rln(b)ln(a)-ln(c)
q=-pln(c)-rln(a)-pln(b)+rln(b)ln(a)-ln(c)
q=-pln(c)-rln(a)-pln(b)+rln(b)ln(a)-ln(c)
 [x2  12  π  xdx ]